Simple LLM Finetuner 项目使用教程
1. 项目的目录结构及介绍
simple-llm-finetuner/
├── example-datasets/
├── .gitattributes
├── .gitignore
├── LICENSE.txt
├── README.md
├── Simple_LLaMA_FineTuner.ipynb
├── app.py
├── config.py
├── inference.ipynb
├── requirements.txt
└── trainer.py
目录结构介绍
- example-datasets/: 包含示例数据集的目录。
- .gitattributes: Git 属性配置文件。
- .gitignore: Git 忽略文件配置。
- LICENSE.txt: 项目许可证文件。
- README.md: 项目说明文档。
- Simple_LLaMA_FineTuner.ipynb: Jupyter Notebook 文件,用于详细说明和演示如何微调模型。
- app.py: 项目的启动文件。
- config.py: 项目的配置文件。
- inference.ipynb: Jupyter Notebook 文件,用于模型推理的演示。
- requirements.txt: 项目依赖包列表。
- trainer.py: 训练器脚本,用于模型的训练。
2. 项目的启动文件介绍
app.py
app.py
是 Simple LLM Finetuner 项目的启动文件。它包含了启动应用程序的代码,用户可以通过运行此文件来启动微调界面。
# app.py 文件内容示例
from config import Config
from trainer import Trainer
def main():
config = Config()
trainer = Trainer(config)
trainer.run()
if __name__ == "__main__":
main()
启动步骤
-
安装项目依赖:
pip install -r requirements.txt
-
运行启动文件:
python app.py
-
打开浏览器,访问
http://127.0.0.1:7860/
即可进入微调界面。
3. 项目的配置文件介绍
config.py
config.py
文件包含了项目的配置参数,用户可以通过修改此文件来调整微调过程中的各种参数,如批大小、学习率、训练轮数等。
# config.py 文件内容示例
class Config:
def __init__(self):
self.batch_size = 8
self.learning_rate = 2e-5
self.num_epochs = 3
self.max_seq_length = 256
self.output_dir = "lora/"
配置参数介绍
- batch_size: 批大小,控制每次训练时使用的样本数量。
- learning_rate: 学习率,控制模型参数更新的步长。
- num_epochs: 训练轮数,控制模型在整个数据集上训练的次数。
- max_seq_length: 最大序列长度,控制输入文本的最大长度。
- output_dir: 模型输出目录,保存训练后的模型文件。
通过调整这些参数,用户可以根据自己的需求和硬件资源来优化模型的训练过程。