LanPaint 使用教程
1. 项目介绍
LanPaint 是一个开源项目,提供了一种无需额外训练即可实现高质量图像修复的方法。它基于扩散模型,通过引入双向对齐机制,在遮罩区域和非遮罩区域之间进行迭代评估和更新,以生成连贯且准确的新内容。LanPaint 支持与多种模型集成,包括 SD 模型、Flux 模型以及自定义模型。
2. 项目快速启动
安装 ComfyUI
首先,根据官方文档安装 ComfyUI。确保你的 ComfyUI 版本大于 0.3.11。
安装 LanPaint 节点
- 通过 ComfyUI-Manager 安装:在管理器中搜索 "LanPaint" 并直接安装。
- 手动安装:在 ComfyUI-Manager 中点击 "通过 Git URL 安装",输入以下 GitHub 仓库链接:
或者将仓库克隆到 ComfyUI 的https://github.com/scraed/LanPaint.git
custom_nodes
文件夹中。
重启 ComfyUI
重启 ComfyUI 以加载 LanPaint 节点。安装完成后,你可以在 ComfyUI 的 "sampling" 分类下找到 LanPaint 节点。
使用 LanPaint 节点
使用 LanPaint KSampler 节点替换默认的 KSampler 节点。图像修复的工作流程与 SetLatentNoiseMask 相同。
确保你的遮罩是二值的(值为 0 或 1),没有透明度或平滑处理。在遮罩编辑器中将遮罩的透明度和硬度设置为最大值。LanPaint 会自动将带有平滑或渐变的遮罩转换为二值遮罩。
LanPaint 依赖于你的文本提示来指导修复过程,明确描述你希望在遮罩区域内生成的内容。如果结果出现伪影或不匹配的元素,可以通过针对性的负提示来抵消。
基本采样器设置
- 步骤:建议大于 50 步
- LanPaint NumSteps:建议大部分任务使用 5
- LanPaint EndSigma:建议真实风格使用 0.6(基于 Juggernaut-xl 测试),动漫风格使用 3.0(基于 Animagine XL 4.0 测试)
默认设置基于 Animagine XL 4.0 和 Juggernaut-xl 进行测试。其他模型可能需要一些参数调整。
3. 应用案例和最佳实践
以下是一些应用案例,展示了 LanPaint 在不同场景下的修复效果:
- 案例 1:篮子到篮球
- 案例 2:白色衬衫到蓝色衬衫
- 案例 3:微笑到大哭
- 案例 4:破损修复
- 案例 5:巨大破损修复
- 案例 6:角色一致性(侧视图生成)
- 案例 7:Flux 模型修复
在应用案例中,你可以通过查看工作流程和遮罩来了解具体的操作步骤。
4. 典型生态项目
LanPaint 可以与以下生态项目结合使用,以扩展其功能:
- ComfyUI:图形用户界面,用于加载模型和设置参数。
- ComfyUI-Manager:插件管理器,用于安装和更新节点。
- 其他图像处理工具:如 Photoshop,用于强调角色特征等。
通过这些典型生态项目的结合使用,可以进一步提高 LanPaint 的应用范围和修复质量。