Data Engineering with Google Cloud Platform 项目教程

Data Engineering with Google Cloud Platform 项目教程

Data-Engineering-with-Google-Cloud-Platform Data Engineering with Google Cloud Platform, published by Packt Data-Engineering-with-Google-Cloud-Platform 项目地址: https://gitcode.com/gh_mirrors/da/Data-Engineering-with-Google-Cloud-Platform

1. 项目介绍

项目概述

Data Engineering with Google Cloud Platform 是一个由 Packt Publishing 出版的书籍配套代码库,旨在帮助数据工程师在 Google Cloud Platform (GCP) 上构建和操作可扩展的数据分析系统。该项目提供了丰富的代码示例和实践指南,涵盖了从数据存储、处理、工作流编排到数据可视化的全流程。

主要功能

  • 数据加载与处理:使用 BigQuery 加载数据并进行处理。
  • 工作流编排:使用 Cloud Composer 和 Airflow 进行数据管道编排。
  • 数据湖构建:在 Dataproc 上创建 Hadoop 数据湖。
  • 消息系统:利用 Pub/Sub 进行消息传递和事件驱动系统。
  • 流数据处理:使用 Dataflow 进行流数据的 ETL 处理。
  • 数据可视化:通过 Data Studio 进行数据可视化。

2. 项目快速启动

环境准备

  1. GCP 账户:确保你有一个 GCP 账户和项目。如果没有,可以参考 GCP 快速入门指南 创建。
  2. Python 环境:项目代码主要使用 Python,建议安装 Python 3.7 或更高版本。

快速启动代码示例

以下是一个简单的代码示例,展示如何使用 BigQuery 加载数据并进行查询。

from google.cloud import bigquery

# 初始化 BigQuery 客户端
client = bigquery.Client()

# 定义查询
query = """
    SELECT name, SUM(number) as total_people
    FROM `bigquery-public-data.usa_names.usa_1910_2013`
    WHERE state = 'TX'
    GROUP BY name
    ORDER BY total_people DESC
    LIMIT 10
"""

# 执行查询
query_job = client.query(query)

# 获取结果
results = query_job.result()

# 打印结果
for row in results:
    print("{}: {}".format(row.name, row.total_people))

运行步骤

  1. 安装依赖:使用 pip 安装必要的 Python 包。
    pip install google-cloud-bigquery
    
  2. 设置环境变量:确保你的 GCP 凭据已正确设置。
    export GOOGLE_APPLICATION_CREDENTIALS="path/to/your/credentials.json"
    
  3. 运行代码:将上述代码保存为 query_bigquery.py 并运行。
    python query_bigquery.py
    

3. 应用案例和最佳实践

应用案例

  • 实时数据处理:使用 Dataflow 处理实时流数据,例如实时日志分析。
  • 数据湖构建:在 Dataproc 上构建 Hadoop 数据湖,用于存储和处理大规模数据集。
  • 数据管道编排:使用 Cloud Composer 和 Airflow 编排复杂的数据管道,确保数据处理的可靠性和可扩展性。

最佳实践

  • 成本优化:利用 GCP 的免费层和成本估算工具,合理规划资源使用。
  • 安全性:使用 GCP 的高级安全功能,如 IAM 和 VPC 服务边界,保护数据安全。
  • 监控与日志:使用 Cloud Monitoring 和 Cloud Logging 监控系统性能和日志,及时发现和解决问题。

4. 典型生态项目

相关项目

  • Data Engineering with Python:使用 Python 进行数据工程的书籍和代码库。
  • Data Engineering with AWS:在 AWS 平台上进行数据工程的书籍和代码库。

生态系统集成

  • BigQuery:GCP 上的大数据分析服务,支持 SQL 查询和大规模数据处理。
  • Cloud Composer:基于 Apache Airflow 的工作流编排服务,用于管理复杂的数据管道。
  • Dataflow:GCP 上的流数据处理服务,支持实时数据处理和 ETL 操作。

通过本教程,你可以快速上手 Data Engineering with Google Cloud Platform 项目,并了解如何在 GCP 上构建和操作可扩展的数据分析系统。

Data-Engineering-with-Google-Cloud-Platform Data Engineering with Google Cloud Platform, published by Packt Data-Engineering-with-Google-Cloud-Platform 项目地址: https://gitcode.com/gh_mirrors/da/Data-Engineering-with-Google-Cloud-Platform

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

农优影

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值