NERDA 开源项目使用教程

NERDA 开源项目使用教程

NERDAFramework for fine-tuning pretrained transformers for Named-Entity Recognition (NER) tasks项目地址:https://gitcode.com/gh_mirrors/ne/NERDA

项目介绍

NERDA(Named Entity Recognition for DAnish)是一个用于命名实体识别(NER)任务的Python包。尽管最初设计用于丹麦语,NERDA现已扩展到支持任何语言的NER任务。它基于流行的Hugging Face Transformers和PyTorch框架,提供了一个易于使用的接口来微调预训练的转换器模型。

项目快速启动

安装

NERDA可以通过pip从PyPI安装:

pip install NERDA

如果你想安装开发版本,可以直接从GitHub安装:

pip install git+https://github.com/ebanalyse/NERDA.git

基本使用

以下是一个简单的示例,展示如何使用NERDA进行命名实体识别:

from NERDA.models import NERDA

# 定义标签
tags = ['B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC', 'B-MISC', 'I-MISC']

# 初始化模型
model = NERDA(
    transformer = 'bert-base-uncased',
    tags = tags
)

# 训练模型
model.train(
    training_dataset = 'data/train.txt',
    validation_dataset = 'data/valid.txt',
    epochs = 3
)

# 预测
text = "Barack Obama was born in Hawaii."
predictions = model.predict(text)
print(predictions)

应用案例和最佳实践

应用案例

NERDA可以应用于多种场景,包括但不限于:

  • 新闻分析:自动识别新闻文章中的人名、组织名和地点。
  • 医疗文档处理:提取医疗记录中的疾病名称、药物名称和医疗程序。
  • 法律文档分析:识别法律文件中的法律术语和当事人名称。

最佳实践

  • 数据预处理:确保训练数据的质量和多样性,以提高模型的泛化能力。
  • 模型选择:根据任务需求选择合适的预训练模型,如BERT、ELECTRA等。
  • 超参数调优:通过调整学习率、批次大小和训练轮数等超参数来优化模型性能。

典型生态项目

NERDA作为一个开源项目,与其他项目和工具集成可以进一步扩展其功能:

  • Hugging Face Transformers:提供预训练模型和工具,NERDA基于此构建。
  • PyTorch:深度学习框架,NERDA使用PyTorch进行模型训练和推理。
  • spaCy:另一个流行的NLP库,可以与NERDA结合使用,提供更全面的NLP解决方案。

通过这些集成,NERDA可以更好地服务于各种复杂的NLP任务和应用场景。

NERDAFramework for fine-tuning pretrained transformers for Named-Entity Recognition (NER) tasks项目地址:https://gitcode.com/gh_mirrors/ne/NERDA

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

苏舰孝Noel

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值