Flickr Scraper 开源项目教程
flickr_scraper Simple Flickr Image Scraper 项目地址: https://gitcode.com/gh_mirrors/fl/flickr_scraper
1. 项目介绍
Flickr Scraper 是一个 Python 工具,旨在帮助用户从 Flickr 收集图像以创建 YOLO 训练数据集。该工具通过 Flickr API 实现关键词搜索和批量下载功能,简化了计算机视觉任务的数据准备流程。用户只需配置 API 密钥即可开始使用,非常适合研究者和开发者进行图像数据采集。
2. 项目快速启动
2.1 安装依赖
首先,确保您已安装 Python 3.7 或更高版本。然后,使用以下命令安装所需的依赖项:
pip install -U -r requirements.txt
2.2 克隆项目
使用 Git 克隆项目到本地:
git clone https://github.com/ultralytics/flickr_scraper.git
cd flickr_scraper
2.3 配置 API 密钥
在运行脚本之前,您需要获取 Flickr API 密钥,并将其插入到 flickr_scraper.py
文件中:
# 替换为您的 Flickr API 密钥和密钥秘密
key = "您的API密钥"
secret = "您的API密钥秘密"
2.4 运行脚本
使用以下命令运行脚本,指定搜索关键词、下载图片数量和保存路径:
python3 flickr_scraper.py --search 'honeybees on flowers' --n 10 --download
运行后,您将看到类似以下输出:
0/10 https://live.staticflickr.com/21/38596887_40df118fd9_o.jpg
...
9/10 https://live.staticflickr.com/1770/43276172331_e779b8c161_o.jpg
Done. (4.1s)
All images saved to /Users/glennjocher/PycharmProjects/flickr_scraper/images/honeybees_on_flowers/
3. 应用案例和最佳实践
3.1 应用案例
- 计算机视觉训练数据集:Flickr Scraper 可以用于收集特定类别的图像,用于训练 YOLO 模型或其他计算机视觉模型。
- 图像分类研究:研究者可以使用该工具快速获取大量图像数据,进行图像分类研究。
3.2 最佳实践
- 遵守 Flickr 的 API 使用限制:在使用 Flickr Scraper 时,务必遵守 Flickr 的 API 使用限制和条款,避免超出请求频率限制。
- 数据清洗:下载的图像可能包含不相关的图片,建议在训练模型之前进行数据清洗,确保数据集的质量。
4. 典型生态项目
- YOLOv5:Flickr Scraper 收集的图像可以直接用于 YOLOv5 模型的训练,提升模型的准确性和泛化能力。
- LabelImg:使用 LabelImg 工具对下载的图像进行标注,生成训练 YOLO 模型所需的标注文件。
- TensorFlow/PyTorch:将收集的图像数据集导入 TensorFlow 或 PyTorch 框架,进行深度学习模型的训练和评估。
通过以上步骤,您可以快速上手并使用 Flickr Scraper 工具,为您的计算机视觉项目收集高质量的图像数据。
flickr_scraper Simple Flickr Image Scraper 项目地址: https://gitcode.com/gh_mirrors/fl/flickr_scraper