CAIL2019 项目使用教程
CAIL2019 中国法研杯司法人工智能挑战赛之相似案例匹配第一名解决方案 项目地址: https://gitcode.com/gh_mirrors/cai/CAIL2019
1. 项目的目录结构及介绍
CAIL2019/
├── datasets/
│ └── split_folds.py
├── loss/
├── models/
├── output/
│ └── ckpts/
├── train/
├── utils/
├── viz_utils/
├── LICENSE
├── README.md
├── bertviz.py
├── convert_tf_checkpoint_to_pytorch.py
├── main.py
├── processing.py
├── requirements.txt
└── train_bert.py
目录结构介绍
- datasets/: 包含数据集处理相关的脚本,如
split_folds.py
用于切分数据集。 - loss/: 包含损失函数相关的文件。
- models/: 包含模型定义相关的文件。
- output/: 包含训练过程中生成的模型检查点文件。
- train/: 包含训练相关的脚本。
- utils/: 包含各种工具函数和辅助函数。
- viz_utils/: 包含可视化相关的工具函数。
- LICENSE: 项目的开源许可证文件。
- README.md: 项目的介绍和使用说明。
- bertviz.py: BERT 可视化相关的脚本。
- convert_tf_checkpoint_to_pytorch.py: 用于将 TensorFlow 模型转换为 PyTorch 模型的脚本。
- main.py: 项目的启动文件,用于模型预测。
- processing.py: 数据预处理相关的脚本。
- requirements.txt: 项目依赖的 Python 包列表。
- train_bert.py: 用于训练 BERT 模型的脚本。
2. 项目的启动文件介绍
main.py
main.py
是项目的启动文件,主要用于模型的预测。通过运行该文件,可以加载训练好的模型并对新的数据进行预测。
python main.py
主要功能
- 加载预训练的 BERT 模型。
- 对输入的法律文书进行相似度计算。
- 输出预测结果。
3. 项目的配置文件介绍
requirements.txt
requirements.txt
文件列出了项目运行所需的 Python 包及其版本。通过运行以下命令可以安装所有依赖包:
pip install -r requirements.txt
主要依赖包
- Python 3.6+
- PyTorch 1.1.0+
environment.yml
如果项目使用了 Conda 环境,environment.yml
文件定义了项目的 Conda 环境配置。可以通过以下命令创建和激活环境:
conda env create -f environment.yml
conda activate cail2019
主要环境配置
- Python 3.6+
- PyTorch 1.1.0+
- 其他必要的 Python 包
通过以上步骤,您可以顺利地启动和配置 CAIL2019 项目,并进行模型的训练和预测。
CAIL2019 中国法研杯司法人工智能挑战赛之相似案例匹配第一名解决方案 项目地址: https://gitcode.com/gh_mirrors/cai/CAIL2019