CAIL2019 项目使用教程

CAIL2019 项目使用教程

CAIL2019 中国法研杯司法人工智能挑战赛之相似案例匹配第一名解决方案 CAIL2019 项目地址: https://gitcode.com/gh_mirrors/cai/CAIL2019

1. 项目的目录结构及介绍

CAIL2019/
├── datasets/
│   └── split_folds.py
├── loss/
├── models/
├── output/
│   └── ckpts/
├── train/
├── utils/
├── viz_utils/
├── LICENSE
├── README.md
├── bertviz.py
├── convert_tf_checkpoint_to_pytorch.py
├── main.py
├── processing.py
├── requirements.txt
└── train_bert.py

目录结构介绍

  • datasets/: 包含数据集处理相关的脚本,如 split_folds.py 用于切分数据集。
  • loss/: 包含损失函数相关的文件。
  • models/: 包含模型定义相关的文件。
  • output/: 包含训练过程中生成的模型检查点文件。
  • train/: 包含训练相关的脚本。
  • utils/: 包含各种工具函数和辅助函数。
  • viz_utils/: 包含可视化相关的工具函数。
  • LICENSE: 项目的开源许可证文件。
  • README.md: 项目的介绍和使用说明。
  • bertviz.py: BERT 可视化相关的脚本。
  • convert_tf_checkpoint_to_pytorch.py: 用于将 TensorFlow 模型转换为 PyTorch 模型的脚本。
  • main.py: 项目的启动文件,用于模型预测。
  • processing.py: 数据预处理相关的脚本。
  • requirements.txt: 项目依赖的 Python 包列表。
  • train_bert.py: 用于训练 BERT 模型的脚本。

2. 项目的启动文件介绍

main.py

main.py 是项目的启动文件,主要用于模型的预测。通过运行该文件,可以加载训练好的模型并对新的数据进行预测。

python main.py

主要功能

  • 加载预训练的 BERT 模型。
  • 对输入的法律文书进行相似度计算。
  • 输出预测结果。

3. 项目的配置文件介绍

requirements.txt

requirements.txt 文件列出了项目运行所需的 Python 包及其版本。通过运行以下命令可以安装所有依赖包:

pip install -r requirements.txt

主要依赖包

  • Python 3.6+
  • PyTorch 1.1.0+

environment.yml

如果项目使用了 Conda 环境,environment.yml 文件定义了项目的 Conda 环境配置。可以通过以下命令创建和激活环境:

conda env create -f environment.yml
conda activate cail2019

主要环境配置

  • Python 3.6+
  • PyTorch 1.1.0+
  • 其他必要的 Python 包

通过以上步骤,您可以顺利地启动和配置 CAIL2019 项目,并进行模型的训练和预测。

CAIL2019 中国法研杯司法人工智能挑战赛之相似案例匹配第一名解决方案 CAIL2019 项目地址: https://gitcode.com/gh_mirrors/cai/CAIL2019

CAIL2019要素抽取是指在2019中国“法研杯”司法人工智能挑战赛(CAIL2019)的要素抽取任务中,参赛者需要根据提供的数据集,从文档中抽取出特定的要素标签,其中包括婚姻家庭(divorce)、劳动争议(labor)和借款合同(loan)三种案由,每种案由包含20类要素标签。 在该比赛中,参赛者使用了不同的技巧和方法。其中一种常见的方法是使用领域预训练,这可以提高模型在特定领域的表现。另外,参赛者还可以使用BERT阅读理解框架等技术,这些技术能够帮助模型理解和提取文本中的信息。 总的来说,CAIL2019要素抽取任务是一个基于司法领域的挑战,要求参赛者从给定的文档中准确并有效地抽取出特定的要素标签。通过运用各种技术和方法,参赛者可以提高模型在该任务上的性能。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [基于BERT阅读理解框架的司法要素抽取方法](https://blog.csdn.net/weixin_45585364/article/details/121668340)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* [cail2019_track2:中国法研杯CAIL2019要素抽取任务第三名方案分享](https://download.csdn.net/download/weixin_42153615/18985117)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陆欣瑶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值