FineDance:项目核心功能/场景

FineDance:项目核心功能/场景

FineDance FineDance: A Fine-grained Choreography Dataset for 3D Full Body Dance Generation. (ICCV2023) FineDance 项目地址: https://gitcode.com/gh_mirrors/fi/FineDance

FineDance 是一个用于3D全身舞蹈生成的细粒度舞谱数据集。

项目介绍

FineDance 是一个全新的、创新性的开源项目,旨在为3D全身舞蹈生成提供高质量、细粒度的舞谱数据集。这个数据集不仅包含了丰富的舞蹈样式和动作,还提供了相应的音乐特征,使得舞蹈生成更加自然、流畅。

FineDance 数据集的核心功能是支持3D全身舞蹈生成,为舞蹈创作、动画制作等领域提供了重要的数据基础。该数据集通过收集多种舞蹈风格和动作,配合精细的音乐特征,为舞蹈生成任务带来了新的可能性和机遇。

项目技术分析

FineDance 数据集基于SMPLH格式,这是一种广泛使用的3D人体建模格式。数据集的组织结构包括标签、动作数据和音乐数据,其中标签文件包含歌曲名称、粗略风格和细粒度类型,动作数据采用SMPLH格式存储,音乐数据则以wav和npy格式存储。

在技术实现方面,FineDance 利用了一系列先进的技术,如librosa库进行音乐特征提取,以及基于深度学习的舞蹈生成模型。这些技术的应用使得FineDance 数据集在舞蹈生成领域具有以下特点:

  1. 细粒度风格分类:数据集包含了丰富的舞蹈风格,从粗略分类到细粒度风格,为不同舞蹈风格的生成提供了基础。

  2. 高质量动作数据:使用SMPLH格式的动作数据,保证了动作的真实性和准确性。

  3. 音乐特征匹配:通过提取音乐特征并与动作数据结合,实现了音乐和舞蹈的紧密结合,提高了生成舞蹈的自然度。

项目及技术应用场景

FineDance 数据集的应用场景广泛,包括但不限于以下几个方面:

  1. 舞蹈生成:为舞蹈创作和动画制作提供高质量的动作数据,支持自动生成符合特定音乐风格的3D舞蹈。

  2. 虚拟现实:在虚拟现实场景中,FineDance 可以用来生成真实的舞蹈动作,提升用户的沉浸式体验。

  3. 教育与科研:为舞蹈和音乐相关的教育和科研提供丰富的数据资源,促进相关领域的发展。

  4. 娱乐产业:在电影、游戏和舞台表演等领域,FineDance 可以用来生成逼真的舞蹈动作,增强娱乐效果。

项目特点

FineDance 数据集具有以下显著特点:

  1. 细粒度分类:覆盖多种舞蹈风格和类型,提供细粒度的舞蹈数据,满足不同场景的需求。

  2. 高质量数据:采用SMPLH格式和高级音乐特征提取技术,保证数据的质量和实用性。

  3. 易于使用:提供清晰的文件结构和示例代码,方便用户快速上手和使用。

  4. 开放性:作为开源项目,FineDance 鼓励社区贡献和扩展,不断丰富数据集和功能。

总结而言,FineDance 数据集是一个具有创新性和实用性的开源项目,为3D全身舞蹈生成领域带来了新的发展机遇。通过其丰富的数据资源和技术优势,FineDance 有望推动舞蹈生成技术的进步,并在多个应用场景中发挥重要作用。

FineDance FineDance: A Fine-grained Choreography Dataset for 3D Full Body Dance Generation. (ICCV2023) FineDance 项目地址: https://gitcode.com/gh_mirrors/fi/FineDance

基于python+NSGA2算法的供水管网水质监测点布局+源码+项目文档,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用,详情见md文档 供水管网水质监测点/传感器布局优化 1.基于整数编码的NSGA2算法 2.最短监测时间与最大监测概率双目标函数 3.使用基于epanet的wntr库进行水力水质模拟,并处理结果 4.将处理结果代入NSGA2算法, 迭代计算出结果 5. 所有功能基本实现, 流程基本可以走通 程序概述 本程序主要是解决供水管网水质监测点的布局优化问题; 面向的是突发污染情况下的水质监测点选取,因此需要多节点进行水质污染注入实验; 之前的做法都是使用epanet的程序包,链接库,但USEPA之后开源了基于Python的水力水质模拟库WNTR; 因此本程序使用了WNTR进行水力水质模拟,编写了水质模拟、数据处理模块;用于解决污染实验的实现与数据收集处理; 由于选择监测点是布局优化问题,因此使用了常见的进化算法NSGA2——非支配遗传算法; 水质监测布局常用的目标是最小化监测时间和最大化监测事件,即一组监测点尽可能对污染事件发生响应最快,对污染事件监测到的数量最多即为最优,但两个目标属于负相关。 有关帕累托解、NGSA2算法请自行搜索其他资料。 本程序实现了水质模拟、数据处理、算法迭代的全部过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

罗愉伊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值