PyAlex 使用教程
pyalexA Python library for OpenAlex (openalex.org)项目地址:https://gitcode.com/gh_mirrors/py/pyalex
项目介绍
PyAlex 是一个用于 OpenAlex 的 Python 库。OpenAlex 是一个包含数亿个相互关联的学术论文、作者、机构等的索引。OpenAlex 提供了一个强大、开放且免费的 REST API,用于提取或搜索学术数据。PyAlex 是一个轻量级且薄层的 Python 接口,用于访问这个 API。PyAlex 尽可能地保持与原始服务设计的接近。
项目快速启动
安装
PyAlex 需要 Python 3.8 或更高版本。可以使用 pip 进行安装:
pip install pyalex
配置和基本使用
首先,导入 PyAlex 并设置你的邮箱以进入礼貌池,这可以提供更快的响应时间:
import pyalex
pyalex.config.email = "mail@example.com"
查询示例
以下是一些基本的查询示例:
from pyalex import Works
# 获取单个作品
work = Works()["W2741809807"]
# 获取引用该作品的作品
referenced_works = Works()[w["referenced_works"]]
# 获取某个作者的作品
author_works = Works().filter(author=["id": "A2887243803"]).get()
应用案例和最佳实践
数据集出版物在全球南方
from pyalex import Works
# 提取全球南方机构发布的类型为数据集的作品
w = Works() \
.filter(institutions=["is_global_south": True]) \
.filter(type="dataset") \
.group_by("institutions.country_code") \
.get()
组织内被引用最多的出版物
from pyalex import Works
# 获取某个组织内被引用最多的出版物
most_cited_works = Works() \
.filter(authorships=["institutions": ["ror": "04pp8hn57"]]) \
.sort(cited_by_count="desc") \
.get()
典型生态项目
PyAlex 作为 OpenAlex 的 Python 接口,与其他学术数据处理和分析工具可以很好地集成。例如,它可以与数据可视化库(如 Matplotlib 和 Plotly)结合使用,以可视化学术数据的趋势和模式。此外,PyAlex 还可以与数据存储和处理工具(如 Pandas 和 SQLAlchemy)结合,以进行更复杂的数据分析和处理。
pyalexA Python library for OpenAlex (openalex.org)项目地址:https://gitcode.com/gh_mirrors/py/pyalex