PyAlex 使用教程

PyAlex 使用教程

pyalexA Python library for OpenAlex (openalex.org)项目地址:https://gitcode.com/gh_mirrors/py/pyalex

项目介绍

PyAlex 是一个用于 OpenAlex 的 Python 库。OpenAlex 是一个包含数亿个相互关联的学术论文、作者、机构等的索引。OpenAlex 提供了一个强大、开放且免费的 REST API,用于提取或搜索学术数据。PyAlex 是一个轻量级且薄层的 Python 接口,用于访问这个 API。PyAlex 尽可能地保持与原始服务设计的接近。

项目快速启动

安装

PyAlex 需要 Python 3.8 或更高版本。可以使用 pip 进行安装:

pip install pyalex

配置和基本使用

首先,导入 PyAlex 并设置你的邮箱以进入礼貌池,这可以提供更快的响应时间:

import pyalex
pyalex.config.email = "mail@example.com"

查询示例

以下是一些基本的查询示例:

from pyalex import Works

# 获取单个作品
work = Works()["W2741809807"]

# 获取引用该作品的作品
referenced_works = Works()[w["referenced_works"]]

# 获取某个作者的作品
author_works = Works().filter(author=["id": "A2887243803"]).get()

应用案例和最佳实践

数据集出版物在全球南方

from pyalex import Works

# 提取全球南方机构发布的类型为数据集的作品
w = Works() \
    .filter(institutions=["is_global_south": True]) \
    .filter(type="dataset") \
    .group_by("institutions.country_code") \
    .get()

组织内被引用最多的出版物

from pyalex import Works

# 获取某个组织内被引用最多的出版物
most_cited_works = Works() \
    .filter(authorships=["institutions": ["ror": "04pp8hn57"]]) \
    .sort(cited_by_count="desc") \
    .get()

典型生态项目

PyAlex 作为 OpenAlex 的 Python 接口,与其他学术数据处理和分析工具可以很好地集成。例如,它可以与数据可视化库(如 Matplotlib 和 Plotly)结合使用,以可视化学术数据的趋势和模式。此外,PyAlex 还可以与数据存储和处理工具(如 Pandas 和 SQLAlchemy)结合,以进行更复杂的数据分析和处理。

pyalexA Python library for OpenAlex (openalex.org)项目地址:https://gitcode.com/gh_mirrors/py/pyalex

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

崔锴业Wolf

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值