LabelTrack 开源项目使用教程
LabelTrack LabelTrack是一个针对于多目标跟踪的图形化自动标注平台 项目地址: https://gitcode.com/gh_mirrors/la/LabelTrack
1. 项目介绍
LabelTrack 是一个针对多目标跟踪(MOT)的图形化自动标注平台。它为数据科学家、机器学习工程师以及计算机视觉爱好者提供了一个直观、高效的平台,用于创建和管理高质量的视频标注数据。LabelTrack 的目标是简化视频理解和自动驾驶等领域的研究与开发过程。
核心特性
- 用户界面:提供友好的图形用户界面(GUI),使得非编程背景的用户也能轻松上手进行标注工作。
- 多类物体跟踪:支持多种物体的同时跟踪,且可以灵活添加新的类别标签。
- 实时预览与回放:允许用户实时查看视频帧并快速回放,以便精确地进行物体标记。
- 自动标注功能:结合现有的深度学习模型,提供初步的自动标注建议,极大地提高了标注效率。
- 导出支持:能够将标注结果导出为常用的数据格式如 COCO、YOLO、VOC 等,方便与其他机器学习框架集成。
- 版本控制:内建的版本控制系统使得团队成员间协同工作变得简单,方便管理和跟踪修改历史。
2. 项目快速启动
安装步骤
-
克隆项目:
git clone https://github.com/DD-DuDa/LabelTrack.git cd LabelTrack/Tracking
-
安装依赖:
pip install -r requirements.txt pip install cython pip install 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI' pip install cython_bbox python setup.py develop
-
下载模型权重:
- 下载模型权重文件并放置在合适的位置。
- 修改
/Tracking/configs
中的 yaml 文件(exp_file, ckpt)。
-
运行项目:
cd LabelTrack python main.py /Tracking/videos
主要功能使用
- 导入视频:支持导入 mp4 文件或视频帧文件夹。
- 手动标注:通过界面进行手动标注。
- 修改标注框:包括大小、标签、ID 等信息。
- 预跟踪:采用 SOTA 目标跟踪模型对视频帧进行预跟踪。
- 导出数据:导出和导入 VisDrone 格式数据集。
3. 应用案例和最佳实践
应用场景
- 自动驾驶:生成训练车辆检测、行人识别模型所需的视频数据。
- 视频监控:对监控录像进行智能分析,例如行为识别或异常检测。
- 机器人导航:为机器人提供环境感知能力的训练数据。
- 体育分析:在比赛中追踪运动员的动作和轨迹,用于战术分析和运动员表现评估。
- 医学影像分析:对医学影像进行物体标注,辅助疾病的诊断和治疗。
最佳实践
- 数据预处理:在进行标注前,确保视频数据的质量,去除噪声和模糊帧。
- 标注一致性:在团队协作中,确保标注标准的一致性,避免标注误差。
- 模型优化:根据实际需求,选择合适的预跟踪模型,并进行必要的优化。
4. 典型生态项目
相关开源项目
- LabelImg:一个用于图像标注的开源工具,支持多种标注格式。
- ByteTrack:一个高效的多目标跟踪算法,适用于实时应用场景。
- OpenCV:一个开源的计算机视觉库,提供了丰富的图像处理和视频分析功能。
集成与扩展
- 与深度学习框架集成:LabelTrack 可以与 TensorFlow、PyTorch 等深度学习框架无缝集成,用于训练和评估模型。
- 自定义标注工具:开发者可以根据需求,扩展 LabelTrack 的功能,添加自定义的标注工具和功能模块。
通过以上步骤和指南,您可以快速上手并充分利用 LabelTrack 进行视频标注工作,提升计算机视觉项目的开发效率。
LabelTrack LabelTrack是一个针对于多目标跟踪的图形化自动标注平台 项目地址: https://gitcode.com/gh_mirrors/la/LabelTrack