ZenML项目中的LLM重排序(Reranking)实现指南

ZenML项目中的LLM重排序(Reranking)实现指南

zenml zenml 项目地址: https://gitcode.com/gh_mirrors/zen/zenml

重排序技术概述

在检索增强生成(RAG)系统中,重排序(Reranking)是一个关键环节,它能够显著提升检索结果的相关性。传统的向量检索虽然高效,但有时返回的结果在语义相关性上并不理想。重排序技术通过更精细的语义分析,对初步检索结果进行重新排序,从而提升最终结果的质量。

为什么在ZenML中使用重排序

ZenML作为一个机器学习操作平台,为构建端到端的机器学习流水线提供了强大支持。在RAG系统中集成重排序模块可以:

  1. 显著提升检索结果的相关性
  2. 改善后续生成模型(GLM)的输入质量
  3. 在不改变底层检索系统的情况下提高整体性能

重排序实现详解

核心组件介绍

我们使用rerankers包来实现重排序功能,它提供了以下优势:

  • 统一的接口支持多种重排序模型
  • 轻量级设计,技术债务低
  • 支持本地模型和API驱动的模型

基础实现示例

from rerankers import Reranker

# 初始化重排序器
ranker = Reranker('cross-encoder')

# 示例文档集
texts = [
    "足球是我最喜欢的运动",
    "篮球比赛非常精彩",
    "《战争与和平》是一部伟大的文学作品",
    "我养了三只猫",
    "编程需要持续学习"
]

# 执行重排序
results = ranker.rank(query="你最喜欢的运动是什么?", docs=texts)

执行结果会按照与查询的相关性进行排序,运动相关的文档会排在前面。

实际应用实现

在实际应用中,我们需要处理更复杂的数据结构,通常文档会附带元数据如URL等:

def rerank_documents(
    query: str, 
    documents: List[Tuple], 
    reranker_model: str = "flashrank"
) -> List[Tuple[str, str]]:
    """文档重排序函数
    
    参数:
        query: 查询字符串
        documents: 文档列表,每个文档是(content, url)元组
        reranker_model: 使用的重排序模型
        
    返回:
        重排序后的(content, url)列表
    """
    ranker = Reranker(reranker_model)
    # 准备重排序文本,可以加入元数据增强效果
    docs_texts = [f"{doc[0]} 来源章节: {doc[2]}" for doc in documents]
    
    # 执行重排序
    results = ranker.rank(query=query, docs=docs_texts)
    
    # 重组结果,保留原始URL
    reranked_results = []
    for result in results.results:
        original_index = result.doc_id
        doc_content = result.text
        doc_url = documents[original_index][1]
        reranked_results.append((doc_content, doc_url))
    
    return reranked_results

集成到查询流程

在完整的查询流程中,重排序作为可选步骤集成:

def query_similar_docs(
    question: str,
    url_filter: str,
    use_reranking: bool = False,
    result_size: int = 5,
) -> Tuple[str, str, List[str]]:
    """文档查询函数
    
    参数:
        question: 查询问题
        url_filter: URL过滤条件
        use_reranking: 是否使用重排序
        result_size: 返回结果数量
        
    返回:
        (问题, URL过滤条件, 结果URL列表)
    """
    # 获取查询的嵌入表示
    query_embedding = get_embeddings(question)
    
    # 连接数据库
    db = get_db_conn()
    
    # 确定检索数量:使用重排序时检索更多文档
    retrieve_count = 20 if use_reranking else result_size
    
    # 获取相似文档
    similar_docs = get_similar_docs(
        query_embedding, db, 
        n=retrieve_count, 
        include_metadata=True
    )

    if use_reranking:
        # 应用重排序并截取所需数量
        reranked_docs = rerank_documents(question, similar_docs)[:result_size]
        urls = [doc[1] for doc in reranked_docs]
    else:
        urls = [doc[1] for doc in similar_docs]

    return (question, url_filter, urls)

重排序模型选择建议

rerankers包支持多种重排序模型,常见选择包括:

  1. cross-encoder: 计算查询与文档的精细相关性
  2. flashrank: 轻量级但效果良好的选择
  3. API模型: 如Cohere或Jina提供的重排序服务

选择模型时需要考虑:

  • 延迟要求
  • 计算资源
  • 准确性需求

性能评估与调优

实现重排序后,应该进行系统评估:

  1. 设计相关性评估指标
  2. 比较使用重排序前后的效果差异
  3. 调整重排序模型的参数
  4. 优化检索文档数量(重排序前)

最佳实践

  1. 检索数量平衡: 重排序前检索足够多的文档(如20个),但不要过多以免影响性能
  2. 元数据利用: 在重排序时加入文档的元数据(如章节信息)提升效果
  3. 缓存策略: 对常见查询结果进行缓存
  4. 渐进式加载: 先返回部分结果,后台进行重排序后更新

总结

在ZenML中实现重排序是提升RAG系统效果的有效方法。通过rerankers包的集成,我们可以轻松地为现有流水线增加这一功能。关键是根据具体需求选择合适的重排序模型,并合理设计检索-重排序的工作流程。这种改进通常能以较小的技术成本获得显著的效果提升。

zenml zenml 项目地址: https://gitcode.com/gh_mirrors/zen/zenml

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

毕腾鉴Goddard

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值