ZenML项目中的LLM重排序(Reranking)实现指南
zenml 项目地址: https://gitcode.com/gh_mirrors/zen/zenml
重排序技术概述
在检索增强生成(RAG)系统中,重排序(Reranking)是一个关键环节,它能够显著提升检索结果的相关性。传统的向量检索虽然高效,但有时返回的结果在语义相关性上并不理想。重排序技术通过更精细的语义分析,对初步检索结果进行重新排序,从而提升最终结果的质量。
为什么在ZenML中使用重排序
ZenML作为一个机器学习操作平台,为构建端到端的机器学习流水线提供了强大支持。在RAG系统中集成重排序模块可以:
- 显著提升检索结果的相关性
- 改善后续生成模型(GLM)的输入质量
- 在不改变底层检索系统的情况下提高整体性能
重排序实现详解
核心组件介绍
我们使用rerankers
包来实现重排序功能,它提供了以下优势:
- 统一的接口支持多种重排序模型
- 轻量级设计,技术债务低
- 支持本地模型和API驱动的模型
基础实现示例
from rerankers import Reranker
# 初始化重排序器
ranker = Reranker('cross-encoder')
# 示例文档集
texts = [
"足球是我最喜欢的运动",
"篮球比赛非常精彩",
"《战争与和平》是一部伟大的文学作品",
"我养了三只猫",
"编程需要持续学习"
]
# 执行重排序
results = ranker.rank(query="你最喜欢的运动是什么?", docs=texts)
执行结果会按照与查询的相关性进行排序,运动相关的文档会排在前面。
实际应用实现
在实际应用中,我们需要处理更复杂的数据结构,通常文档会附带元数据如URL等:
def rerank_documents(
query: str,
documents: List[Tuple],
reranker_model: str = "flashrank"
) -> List[Tuple[str, str]]:
"""文档重排序函数
参数:
query: 查询字符串
documents: 文档列表,每个文档是(content, url)元组
reranker_model: 使用的重排序模型
返回:
重排序后的(content, url)列表
"""
ranker = Reranker(reranker_model)
# 准备重排序文本,可以加入元数据增强效果
docs_texts = [f"{doc[0]} 来源章节: {doc[2]}" for doc in documents]
# 执行重排序
results = ranker.rank(query=query, docs=docs_texts)
# 重组结果,保留原始URL
reranked_results = []
for result in results.results:
original_index = result.doc_id
doc_content = result.text
doc_url = documents[original_index][1]
reranked_results.append((doc_content, doc_url))
return reranked_results
集成到查询流程
在完整的查询流程中,重排序作为可选步骤集成:
def query_similar_docs(
question: str,
url_filter: str,
use_reranking: bool = False,
result_size: int = 5,
) -> Tuple[str, str, List[str]]:
"""文档查询函数
参数:
question: 查询问题
url_filter: URL过滤条件
use_reranking: 是否使用重排序
result_size: 返回结果数量
返回:
(问题, URL过滤条件, 结果URL列表)
"""
# 获取查询的嵌入表示
query_embedding = get_embeddings(question)
# 连接数据库
db = get_db_conn()
# 确定检索数量:使用重排序时检索更多文档
retrieve_count = 20 if use_reranking else result_size
# 获取相似文档
similar_docs = get_similar_docs(
query_embedding, db,
n=retrieve_count,
include_metadata=True
)
if use_reranking:
# 应用重排序并截取所需数量
reranked_docs = rerank_documents(question, similar_docs)[:result_size]
urls = [doc[1] for doc in reranked_docs]
else:
urls = [doc[1] for doc in similar_docs]
return (question, url_filter, urls)
重排序模型选择建议
rerankers
包支持多种重排序模型,常见选择包括:
- cross-encoder: 计算查询与文档的精细相关性
- flashrank: 轻量级但效果良好的选择
- API模型: 如Cohere或Jina提供的重排序服务
选择模型时需要考虑:
- 延迟要求
- 计算资源
- 准确性需求
性能评估与调优
实现重排序后,应该进行系统评估:
- 设计相关性评估指标
- 比较使用重排序前后的效果差异
- 调整重排序模型的参数
- 优化检索文档数量(重排序前)
最佳实践
- 检索数量平衡: 重排序前检索足够多的文档(如20个),但不要过多以免影响性能
- 元数据利用: 在重排序时加入文档的元数据(如章节信息)提升效果
- 缓存策略: 对常见查询结果进行缓存
- 渐进式加载: 先返回部分结果,后台进行重排序后更新
总结
在ZenML中实现重排序是提升RAG系统效果的有效方法。通过rerankers
包的集成,我们可以轻松地为现有流水线增加这一功能。关键是根据具体需求选择合适的重排序模型,并合理设计检索-重排序的工作流程。这种改进通常能以较小的技术成本获得显著的效果提升。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考