RankLLM:开源大语言模型驱动的文档重排序利器

RankLLM:开源大语言模型驱动的文档重排序利器

rank_llm Repository for prompt-decoding using LLMs (GPT3.5, GPT4, Vicuna, and Zephyr) rank_llm 项目地址: https://gitcode.com/gh_mirrors/ra/rank_llm

项目介绍

RankLLM 是一个专注于文档重排序的开源项目,提供了一系列基于点对点模型(如 monoT5)和列表对点模型(如 RankGPT 变体)的文档重排序工具。这些模型不仅兼容 FastChat 支持的开源大语言模型(如 Vicuna、Zephyr 等),还支持 vLLM。RankLLM 的代码部分借鉴了 RankGPTPyGaggleLiT5 等项目,确保了其高效性和可靠性。

项目技术分析

RankLLM 的核心技术在于其强大的文档重排序能力。项目支持多种模型,包括但不限于:

  • RankZephyr 7B V1 - Full - BF16:基于 Zephyr 7B 模型的全精度版本,适用于高精度需求场景。
  • RankVicuna 7B - V1:基于 Vicuna 7B 模型的版本,支持多种数据增强技术。
  • LiT5 系列:包括 LiT5 Distill 和 LiT5 Score 系列,适用于不同规模的文档重排序任务。
  • MonoT5 系列:点对点重排序模型,适用于快速且高效的文档排序。

RankLLM 通过集成多种开源大语言模型,提供了灵活且高效的文档重排序解决方案。用户可以根据具体需求选择合适的模型,并通过简单的命令行操作实现文档的重排序。

项目及技术应用场景

RankLLM 的应用场景非常广泛,尤其适用于以下领域:

  • 信息检索:在搜索引擎中,RankLLM 可以帮助提升搜索结果的相关性,确保用户能够快速找到所需信息。
  • 文档管理系统:在企业文档管理系统中,RankLLM 可以对文档进行智能排序,提高文档检索效率。
  • 学术研究:在学术文献检索中,RankLLM 可以帮助研究人员快速找到相关文献,提升研究效率。
  • 内容推荐系统:在内容推荐系统中,RankLLM 可以根据用户行为和内容相关性,智能推荐相关内容。

项目特点

RankLLM 具有以下显著特点:

  1. 开源兼容性:支持多种开源大语言模型,如 Vicuna、Zephyr 等,确保了项目的开放性和灵活性。
  2. 高效性:通过集成 vLLM 等高效库,RankLLM 能够在保证精度的同时,实现快速的重排序操作。
  3. 易用性:项目提供了详细的安装和使用指南,用户可以通过简单的命令行操作,快速上手并使用 RankLLM。
  4. 模型多样性:RankLLM 提供了多种模型选择,用户可以根据具体需求选择合适的模型,满足不同场景下的重排序需求。

总之,RankLLM 是一个功能强大且易于使用的文档重排序工具,适用于多种应用场景。无论你是开发者、研究人员还是企业用户,RankLLM 都能为你提供高效、灵活的文档重排序解决方案。快来试试吧!

rank_llm Repository for prompt-decoding using LLMs (GPT3.5, GPT4, Vicuna, and Zephyr) rank_llm 项目地址: https://gitcode.com/gh_mirrors/ra/rank_llm

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

尚虹卿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值