Prompt Poet 开源项目教程
1. 项目目录结构及介绍
Prompt Poet 是一个用于简化提示设计的开源项目,它通过低代码的方式帮助开发者和技术门外汉创建灵活、动态的提示。以下是项目的目录结构及其简单介绍:
prompt-poet/
├── .gitignore # 忽略文件列表
├── LICENSE # 项目许可证文件
├── MANIFEST.in # 打包配置文件
├── Makefile # 构建脚本
├── README.md # 项目说明文件
├── VERSION # 项目版本文件
├── cache-aware-truncation.png # 缓存感知截断示例图片
├── prompt_poet/
│ ├── __init__.py # 包初始化文件
│ ├── prompt.py # 核心提示生成逻辑
│ ├── scripts/ # 脚本目录
│ ├── tests/ # 测试目录
│ └── ...
└── requirements-dev.txt # 开发环境依赖
.gitignore
:指定Git忽略的文件和目录。LICENSE
:项目的开源许可证(MIT License)。MANIFEST.in
:包含项目打包时需要包含的文件。Makefile
:包含项目的构建命令。README.md
:项目的详细说明文件,包括项目介绍、安装和使用指南。VERSION
:项目版本号。prompt_poet
:项目的主要目录,包含Python包和模块。__init__.py
:用于将目录识别为Python包。prompt.py
:实现提示生成功能的Python模块。scripts/
:存放项目相关的脚本。tests/
:存放测试脚本和测试用例。
requirements-dev.txt
:开发环境所需的Python包依赖。
2. 项目的启动文件介绍
项目的启动通常是通过Python模块中的函数或者脚本进行的。在prompt_poet
目录下的prompt.py
中,定义了主要的类和方法。以下是一个简单的启动示例:
from prompt_poet import Prompt
from langchain import ChatOpenAI
# 创建一个提示对象
prompt = Prompt(
raw_template="Your template here",
template_data={"variable1": "value1", "variable2": "value2"}
)
# 创建一个模型对象,这里以ChatOpenAI为例
model = ChatOpenAI(model="gpt-4o-mini")
# 使用模型生成响应
response = model.invoke(prompt.messages)
在这个示例中,我们首先导入了必要的类,然后创建了一个Prompt
对象,并提供了模板和模板数据。接着,我们创建了一个模型对象,并通过调用invoke
方法来生成响应。
3. 项目的配置文件介绍
在prompt-poet
项目中,配置文件通常用于定义项目运行时的参数和设置。虽然项目本身可能没有专门的配置文件,但是可以通过环境变量或者requirements-dev.txt
文件中的依赖来间接管理配置。
例如,你可以在requirements-dev.txt
中看到项目依赖的Python包,如下所示:
prompt-poet==0.1.0
langchain==0.0.1
这些行定义了项目依赖的prompt-poet
和langchain
包及其版本。当你需要安装或更新这些依赖时,你可以直接使用pip install -r requirements-dev.txt
命令。
此外,项目可能使用环境变量来配置API密钥或其他敏感信息。这些环境变量可以在运行环境的配置文件中设置,或者在启动脚本前通过命令行设置。
以上就是Prompt Poet开源项目的目录结构、启动文件和配置文件的简单介绍。希望这个教程能够帮助你更好地理解和使用这个项目。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考