语音活动检测(Voice Activity Detection)项目教程

语音活动检测(Voice Activity Detection)项目教程

voice_activity_detection项目地址:https://gitcode.com/gh_mirrors/voic/voice_activity_detection

1. 项目目录结构及介绍

项目的目录结构如下:

.
├── README.md    # 项目简介
├── data         # 存放数据集和其他输入文件
│   └── sample.wav  # 示例音频文件
├── models       # 模型定义文件夹
│   ├── model.py  # 语音活动检测模型
├── scripts      # 脚本文件夹
│   ├── train.py  # 训练脚本
│   └── detect.py  # 实时检测脚本
└── config.yaml   # 配置文件
  • data 目录用于存储音频样本和训练/测试所需的数据。
  • models 包含了实现语音活动检测的核心模型代码。
  • scripts 提供了训练模型 (train.py) 和进行实时语音活动检测 (detect.py) 的脚本。
  • config.yaml 是项目的配置文件,包含了运行所需的各种参数设置。

2. 项目的启动文件介绍

2.1 train.py

train.py是训练模型的入口。它从config.yaml读取训练参数,加载数据集,初始化模型并执行训练循环。在运行此文件前,确保已准备好训练数据并正确设置了配置文件中的相关路径。

python scripts/train.py

2.2 detect.py

detect.py文件用于实时语音活动检测。它利用已经训练好的模型监听麦克风输入,判断何时存在语音活动。执行以下命令即可开始实时检测:

python scripts/detect.py

在运行之前,需要确保模型已经被正确地训练,并且config.yaml中配置了模型路径。

3. 项目的配置文件介绍

config.yaml是项目的配置中心,包含以下主要部分:

model:
  type: <模型类型>  # 如CNN或RNN等
  path: <预训练模型路径>

data:
  train_folder: <训练数据目录>
  test_folder: <测试数据目录>
  sample_rate: <采样率>
  window_size: <窗口大小>
  hop_size: <窗口滑动步长>

processing:
  preprocessor: <预处理器类名>
  normalize: <是否进行归一化>

inference:
  device: <设备类型,如cpu或cuda>
  threshold: <语音活动阈值>

streaming:
  input_device_id: <输入设备ID>
  output_file: <保存结果的文件路径>
  • model: 定义模型类型和预训练模型的路径。
  • data: 与数据处理相关的参数,包括数据集路径、采样率以及分析窗口参数。
  • processing: 预处理选项,例如预处理器类型以及是否对信号进行归一化。
  • inference: 用于推理的设置,包括设备选择和语音活动的检测阈值。
  • streaming: 实时流处理参数,如输入设备ID(用于监听麦克风)和结果输出文件路径。

要修改这些配置,只需直接编辑config.yaml文件,根据需求调整各个参数。

voice_activity_detection项目地址:https://gitcode.com/gh_mirrors/voic/voice_activity_detection

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

尤嫒冰

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值