zeroverse:高效生成大型重建模型的数据集
项目介绍
zeroverse
是一个开源项目,旨在实现论文《LRM-Zero: Training Large Reconstruction Models with Synthesized Data》中的核心代码。该论文由Desai Xie等人撰写,是Adobe Research、Stony Brook University和Kiel University的合作成果。项目提供了一种高效的方法,用于通过合成数据训练大型重建模型,极大地推动了计算机视觉和3D重建领域的发展。
项目技术分析
zeroverse
的核心技术基于SIGGRAPH 2018的论文《Deep Image-Based Relighting from Optimal Sparse Samples》,并使用了一个公开的材料数据集MatSynth。项目通过Python脚本create_shapes.py
生成单个zeroverse
对象,并支持通过不同的种子值并行运行代码以生成大规模数据集。
项目环境需要Python 3.10,以及Blender等图形处理工具和相关的Python库,如opencv-python、pillow等。项目的代码设计允许对生成的形状进行布尔差集和线框增强,从而丰富模型的多样性。
项目及技术应用场景
zeroverse
的应用场景广泛,主要针对的是计算机视觉领域中的3D重建技术。以下是几个典型的应用场景:
- 3D模型训练与测试:通过合成大量多样化的3D对象,可以为神经网络提供丰富的训练数据,从而提高模型的泛化能力和鲁棒性。
- 虚拟现实与增强现实:在虚拟现实和增强现实应用中,需要大量的3D对象来构建虚拟环境,
zeroverse
可以帮助快速生成这些对象。 - 计算机图形学:在计算机图形学中,生成复杂的三维形状对于算法测试和视觉效果设计至关重要。
项目特点
- 高效性:
zeroverse
通过并行处理和合成数据,大大提高了数据生成的效率。 - 灵活性:项目允许用户自定义生成形状的参数,包括形状的子对象数量、尺寸、材质等,从而提供极高的灵活性。
- 可扩展性:通过简单的并行化处理,用户可以轻松扩展数据集的规模,满足不同项目的需求。
以下是使用zeroverse
生成单个对象的步骤:
# 生成对象
python create_shapes.py --seed 0 --output_dir outputs/
# 渲染对象
python zeroverse_rgba.py --seed 0 --object_path outputs/some_uuid/some_uuid.glb --output_dir outputs/some_uuid/views
若要生成完整的数据集,只需将上述单对象生成过程并行化,并运行800K次,每次使用不同的种子值,即可得到800K个对象的数据集。
在使用和推广zeroverse
时,若发现其价值,建议引用以下论文:
@misc{xie2024lrmzero,
title={LRM-Zero: Training Large Reconstruction Models with Synthesized Data},
author={Desai Xie and Sai Bi and Zhixin Shu and Kai Zhang and Zexiang Xu and Yi Zhou and Sören Pirk and Arie Kaufman and Xin Sun and Hao Tan},
year={2024},
eprint={2406.09371},
archivePrefix={arXiv},
primaryClass={id='cs.CV' full_name='Computer Vision and Pattern Recognition' is_active=True alt_name=None in_archive='cs' is_general=False description='Covers image processing, computer vision, pattern recognition, and scene understanding. Roughly includes material in ACM Subject Classes I.2.10, I.4, and I.5.'}
}
zeroverse
项目的开源精神和前沿技术,使其成为3D重建领域不可或缺的工具之一。通过本文的介绍,我们希望更多的研究人员和开发者能够了解并使用zeroverse
,共同推动相关技术的进步。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考