FaceDatasets 项目使用教程

FaceDatasets 项目使用教程

FaceDatasetsSome scripts to process face datasets.项目地址:https://gitcode.com/gh_mirrors/fa/FaceDatasets

1. 项目目录结构及介绍

FaceDatasets/
├── data/
│   ├── dataset1/
│   ├── dataset2/
│   └── ...
├── scripts/
│   ├── preprocess.py
│   ├── train.py
│   └── ...
├── config/
│   ├── default.yaml
│   └── ...
├── README.md
├── requirements.txt
└── setup.py

目录结构说明

  • data/: 存放数据集的目录,包含多个子目录,每个子目录对应一个数据集。
  • scripts/: 包含项目的脚本文件,如数据预处理脚本 preprocess.py 和训练脚本 train.py
  • config/: 存放项目的配置文件,如 default.yaml
  • README.md: 项目的说明文档。
  • requirements.txt: 项目依赖的 Python 包列表。
  • setup.py: 项目的安装脚本。

2. 项目启动文件介绍

scripts/train.py

train.py 是项目的启动文件,用于启动训练过程。该脚本通常会读取配置文件中的参数,并根据这些参数进行模型训练。

使用方法
python scripts/train.py --config config/default.yaml

参数说明

  • --config: 指定配置文件路径,默认使用 config/default.yaml

3. 项目配置文件介绍

config/default.yaml

default.yaml 是项目的默认配置文件,包含了训练过程中需要用到的各种参数。

配置文件示例
dataset:
  name: "dataset1"
  path: "data/dataset1"

training:
  batch_size: 32
  epochs: 100
  learning_rate: 0.001

model:
  type: "resnet50"
  pretrained: true

配置项说明

  • dataset: 数据集相关配置。
    • name: 数据集名称。
    • path: 数据集路径。
  • training: 训练相关配置。
    • batch_size: 批处理大小。
    • epochs: 训练轮数。
    • learning_rate: 学习率。
  • model: 模型相关配置。
    • type: 模型类型,如 resnet50
    • pretrained: 是否使用预训练模型。

通过修改 default.yaml 文件中的配置项,可以调整训练过程中的各种参数。

FaceDatasetsSome scripts to process face datasets.项目地址:https://gitcode.com/gh_mirrors/fa/FaceDatasets

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

羿丹花Zea

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值