多模态服装设计师项目安装与配置指南
1. 项目基础介绍
本项目是"Multimodal Garment Designer: Human-Centric Latent Diffusion Models for Fashion Image Editing"的开源实现。该项目通过使用计算机视觉技术,改进时尚设计过程,允许用户通过多模态提示(如文本、人体姿态、服装草图)来指导生成以人为中心的时尚图像。项目主要使用的编程语言是Python。
2. 关键技术和框架
- latent diffusion models:本项目使用了潜在扩散模型,这是一种生成对抗网络(GAN)的变体,用于生成高质量的图像。
- CLIPTextModel和CLIPTokenizer:这些是用于文本编码和解码的模型和分词器,它们基于CLIP(Contrastive Language–Image Pre-training)框架,用于处理和生成与图像相关的文本描述。
- AutoencoderKL和DDIMScheduler:这是用于图像编码和解码的变分自编码器,以及用于扩散过程的调度器。
- PyTorch:一个流行的开源机器学习库,用于项目的深度学习实现。
3. 安装和配置
准备工作
在开始安装之前,请确保您的系统满足以下要求:
- 操作系统:Linux或macOS
- Python版本:Python 3.9
- 环境管理器:conda(推荐使用Anaconda)
安装步骤
-
克隆项目仓库
打开终端(或命令提示符),执行以下命令以克隆项目仓库:
git clone https://github.com/aimagelab/multimodal-garment-designer.git cd multimodal-garment-designer
-
创建虚拟环境并安装依赖
使用conda创建一个新的虚拟环境,并安装所需的Python依赖:
conda env create -n mgd -f environment.yml conda activate mgd
如果您无法使用
environment.yml
文件,也可以手动创建环境并安装以下包:conda create -n mgd -y python=3.9 conda activate mgd pip install torch==1.12.1 torchmetrics==0.11.0 opencv-python==4.7.0.68 diffusers==0.12.0 transformers==4.25.1 accelerate==0.15.0 clean-fid==0.1.35 torchmetrics[image]==0.11.0
-
运行示例
项目的示例数据和代码位于
assets/data
目录下。要运行示例,请使用以下命令:python src/eval.py --dataset_path ../assets/data/dresscode --dataset dresscode --output_dir ./output --save_name example --test_order paired
请根据需要修改
dataset_path
、output_dir
、save_name
和test_order
等参数。
以上步骤提供了从环境搭建到运行示例的详细指南,即使是对深度学习项目不太熟悉的用户也能够按照这些步骤成功安装和配置项目。