CodeFormer 项目使用教程
1. 项目的目录结构及介绍
CodeFormer 项目的目录结构如下:
CodeFormer/
├── assets/
├── basicsr/
├── docs/
├── facelib/
├── inputs/
├── options/
├── scripts/
├── web-demo/
├── weights/
├── .gitignore
├── LICENSE
├── README.md
├── inference_codeformer.py
├── inference_colorization.py
├── inference_inpainting.py
└── requirements.txt
目录结构介绍:
- assets/: 存放项目相关的资源文件。
- basicsr/: 包含基本的超分辨率相关代码。
- docs/: 存放项目的文档文件。
- facelib/: 包含人脸相关的库代码。
- inputs/: 存放输入的测试数据,包括整个图像和裁剪后的人脸图像。
- options/: 存放项目的配置选项文件。
- scripts/: 包含项目的脚本文件,如数据下载、人脸裁剪等。
- web-demo/: 存放Web演示相关的代码。
- weights/: 存放预训练模型权重文件。
- .gitignore: Git忽略文件配置。
- LICENSE: 项目许可证文件。
- README.md: 项目介绍和使用说明。
- inference_codeformer.py: 用于人脸修复的推理脚本。
- inference_colorization.py: 用于人脸着色的推理脚本。
- inference_inpainting.py: 用于人脸修复的推理脚本。
- requirements.txt: 项目依赖的Python包列表。
2. 项目的启动文件介绍
CodeFormer 项目的主要启动文件包括:
- inference_codeformer.py: 用于人脸修复的推理脚本。可以通过命令行参数指定输入图像路径、权重参数等。
- inference_colorization.py: 用于人脸着色的推理脚本。可以通过命令行参数指定输入图像路径、权重参数等。
- inference_inpainting.py: 用于人脸修复的推理脚本。可以通过命令行参数指定输入图像路径、权重参数等。
启动示例:
# 人脸修复(裁剪和对齐的人脸)
python inference_codeformer.py -w 0.5 --has_aligned --input_path [image folder]|[image path]
# 整体图像增强
python inference_codeformer.py -w 0.7 --input_path [image folder]|[image path]
# 视频增强
python inference_codeformer.py --bg_upsampler realesrgan --face_upsample -w 1.0 --input_path [video path]
3. 项目的配置文件介绍
CodeFormer 项目的主要配置文件包括:
- requirements.txt: 列出了项目运行所需的Python包及其版本。
- options/: 存放项目的配置选项文件,如训练和推理的配置参数。
requirements.txt
torch>=1.7.1
torchvision>=0.8.2
numpy>=1.19.2
opencv-python>=4.4.0.46
scikit-image>=0.17.2
scipy>=1.5.2
tqdm>=4.50.2
options/
- train_codeformer.yml: 训练CodeFormer模型的配置文件,包含数据集路径、模型参数、优化器设置等。
- test_codeformer.yml: 测试CodeFormer模型的配置文件,包含测试数据路径、模型权重路径等。
通过这些配置文件,用户可以自定义训练和推理过程中的各种参数,以满足不同的需求。