Building Machine Learning Pipelines 项目教程

Building Machine Learning Pipelines 项目教程

building-machine-learning-pipelines Code repository for the O'Reilly publication "Building Machine Learning Pipelines" by Hannes Hapke & Catherine Nelson building-machine-learning-pipelines 项目地址: https://gitcode.com/gh_mirrors/bu/building-machine-learning-pipelines

1. 项目介绍

Building Machine Learning Pipelines 是一个由 Hannes Hapke 和 Catherine Nelson 编写的 O'Reilly 出版物的代码仓库。该项目旨在帮助开发者构建和优化机器学习流水线,涵盖了从数据处理到模型部署的整个流程。项目代码基于 TensorFlow Extended (TFX)、Apache Beam 等开源工具,提供了丰富的示例和教程,帮助开发者快速上手并深入理解机器学习流水线的构建过程。

2. 项目快速启动

2.1 环境准备

在开始之前,请确保你已经安装了以下依赖:

  • Python 3.8 或更高版本
  • TensorFlow 2.6.1 或更高版本
  • Apache Beam 2.33.0 或更高版本
  • TFX 1.4.0 或更高版本

你可以使用以下命令安装这些依赖:

pip install tensorflow==2.6.1 apache-beam==2.33.0 tfx==1.4.0

2.2 下载项目

首先,克隆项目仓库到本地:

git clone https://github.com/Building-ML-Pipelines/building-machine-learning-pipelines.git
cd building-machine-learning-pipelines

2.3 下载数据集

项目使用了一个公开的消费者投诉数据集。你可以通过以下命令下载数据集:

python3 utils/download_dataset.py

下载完成后,数据将存储在 data 文件夹中。

2.4 运行示例流水线

项目提供了一个交互式的 TFX 流水线示例。你可以通过以下命令运行该流水线:

python3 interactive-pipeline/interactive_pipeline.py

3. 应用案例和最佳实践

3.1 消费者投诉分类

项目中的一个典型应用案例是消费者投诉分类。通过构建一个机器学习流水线,项目展示了如何从原始数据中提取特征、训练模型并进行评估。这个案例不仅帮助开发者理解 TFX 的基本用法,还展示了如何处理实际业务中的数据问题。

3.2 模型分析与公平性评估

项目还提供了模型分析和公平性评估的代码示例。通过使用 TensorFlow Model Analysis (TFMA) 和 Fairness Indicators,开发者可以深入分析模型的性能,并确保模型在不同群体中的公平性。

4. 典型生态项目

4.1 TensorFlow Extended (TFX)

TFX 是一个端到端的机器学习平台,提供了从数据处理到模型部署的全套工具。Building Machine Learning Pipelines 项目充分利用了 TFX 的强大功能,展示了如何构建高效、可扩展的机器学习流水线。

4.2 Apache Beam

Apache Beam 是一个用于构建批处理和流处理流水线的统一编程模型。项目中的流水线代码大量使用了 Apache Beam 来处理数据,展示了如何将 Beam 与 TFX 结合使用,以实现高效的数据处理。

4.3 Kubeflow Pipelines

Kubeflow Pipelines 是一个基于 Kubernetes 的机器学习流水线管理工具。项目中提供了如何在 Kubeflow Pipelines 上运行 TFX 流水线的示例,帮助开发者将机器学习流水线部署到生产环境中。

通过以上内容,你可以快速上手 Building Machine Learning Pipelines 项目,并深入理解如何构建和优化机器学习流水线。

building-machine-learning-pipelines Code repository for the O'Reilly publication "Building Machine Learning Pipelines" by Hannes Hapke & Catherine Nelson building-machine-learning-pipelines 项目地址: https://gitcode.com/gh_mirrors/bu/building-machine-learning-pipelines

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

邴治盟Walton

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值