大型时间序列模型项目教程

大型时间序列模型项目教程

Large-Time-Series-Model Official code, datasets and checkpoints for "Timer: Generative Pre-trained Transformers Are Large Time Series Models" (ICML 2024) Large-Time-Series-Model 项目地址: https://gitcode.com/gh_mirrors/la/Large-Time-Series-Model

1. 项目介绍

本项目是基于开源代码库 Large-Time-Series-Model 编写的使用教程。该代码库是“Timer: Generative Pre-trained Transformers Are Large Time Series Models”论文的官方实现,旨在提供一种用于时间序列分析的大型生成预训练模型。

Timer 是一个基于变换器架构的时间序列分析模型,通过预训练能够对各种时间序列数据进行有效建模。它支持零样本预测、少样本适应等多种任务,并在多种时间序列分析任务中取得了最先进的表现。

2. 项目快速启动

环境准备

首先,确保您的环境中安装有 Python 3.10 或更高版本,并安装必要的依赖项。可以通过以下命令安装:

pip install -r requirements.txt

数据集下载

您需要从 HuggingFace 或 Tsinghua Cloud 下载相应的时间序列数据集,并放置在项目目录下的 dataset/ 文件夹中。

# 示例数据集下载命令,实际使用时请替换为正确的数据集下载命令
huggingface-cli login
export HF_ENDPOINT=https://hf-mirror.com
python ./scripts/UTSD/download_dataset.py

模型加载

接下来,从 Google Drive 或 Baidu Drive 下载预训练的模型权重,并将其放置在项目目录下的 checkpoints/ 文件夹中。

运行示例

以下是一个使用 Timer 模型进行预测的 Python 代码示例:

import torch
from transformers import AutoModelForCausalLM

# 加载预训练模型
model = AutoModelForCausalLM.from_pretrained('thuml/timer-base-84m', trust_remote_code=True)

# 准备输入数据
batch_size, lookback_length = 1, 2880
seqs = torch.randn(batch_size, lookback_length)

# 进行预测
prediction_length = 96
normed_output = model.generate(normed_seqs, max_new_tokens=prediction_length)
print(output.shape)

3. 应用案例和最佳实践

预测任务

为了进行预测任务,可以使用以下命令:

bash ./scripts/forecast/ECL.sh

插值任务

对于时间序列的插值任务,可以运行以下命令:

bash ./scripts/imputation/ECL.sh

异常检测任务

异常检测任务可以通过以下命令执行:

bash ./scripts/anomaly_detection/UCR.sh

4. 典型生态项目

Timer 模型不仅在时间序列预测、插值和异常检测方面有着广泛应用,其研究思想和实现方法也为时间序列分析领域贡献了新的视角。以下是一些与 Timer 相关的生态项目:

  • OpenLTM: 一个用于探索大型时间序列模型设计哲学的开源代码库。
  • Timer-XL: 针对统一预测的 Timer 扩展版本,支持任意长度和任意变量的时间序列。

在使用这些模型时,请遵循相应的项目文档和最佳实践,以获得最佳效果。

Large-Time-Series-Model Official code, datasets and checkpoints for "Timer: Generative Pre-trained Transformers Are Large Time Series Models" (ICML 2024) Large-Time-Series-Model 项目地址: https://gitcode.com/gh_mirrors/la/Large-Time-Series-Model

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

邱弛安

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值