手物体联合姿态估计在稀疏标注视频中的开源项目实战指南

手物体联合姿态估计在稀疏标注视频中的开源项目实战指南

handobjectconsist[cvpr 20] Demo, training and evaluation code for joint hand-object pose estimation in sparsely annotated videos项目地址:https://gitcode.com/gh_mirrors/ha/handobjectconsist

项目介绍

本指南旨在介绍GitHub上的一个名为handobjectconsist的开源项目。此项目由Yana Hasson等作者开发,并在CVPR 2020上发表论文《利用时间上的光度一致性进行稀疏监督的手-物重建》。它提供了一个演示训练与评估框架,专注于在只有少量注解的视频中联合估计手与物体的姿态。通过利用图像间的光度一致性,项目实现了对手和物体姿态的高效学习。

项目快速启动

步骤一:获取项目源码及环境准备

首先,从GitHub克隆项目到本地:

git clone https://github.com/hassony2/handobjectconsist.git
cd handobjectconsist

接下来,创建并激活一个包含必要Python依赖的虚拟环境:

conda env create --file=environment.yml
conda activate handobject_env

确保下载MANO模型文件,这需要访问MANO网站注册账号以获取。

步骤二:运行示例

在完成上述设置后,若要开始训练一个模型,可以参考以下命令,调整必要的路径和参数:

python trainmeshwarp.py \
    --freeze_batchnorm \
    --consist_gt_refs \
    --workers 8 \
    --fraction 0.00625 \
    --resume path/to/checkpoints/saved_checkpoint.pth \
    --lambda_data 1 \
    --lambda_consist 0

请注意替换path/to/checkpoints/saved_checkpoint.pth为你的实际模型保存路径。

应用案例和最佳实践

在训练完模型之后,可以将其应用于新的视频数据中,执行实时或离线的手物体姿态估计。最佳实践建议包括精细调整模型参数来适应特定的场景需求,例如不同的光照条件、背景复杂度以及对象种类。此外,持续监控训练过程中的损失变化,适时调整超参数,保证模型的有效学习。

典型生态项目

虽然直接关联的“典型生态项目”信息没有提供,但类似的计算机视觉项目通常可以互相借鉴。开发者在研究手物体交互技术时,可能会结合PWC-Net用于光流计算,或者利用PyTorch版的Neural Renderer进行可微渲染。对于那些希望扩展手部或物体识别到更广泛领域应用的研究者来说,探索如OpenPose这样的全身姿态估计项目,或是HO-3D、FPHA等其他专注手物体交互的数据库将是非常有益的。


以上即是关于如何开始使用handobjectconsist项目的基本指导,通过遵循这些步骤,开发者能够迅速入手手物体联合姿态估计的前沿研究与应用。

handobjectconsist[cvpr 20] Demo, training and evaluation code for joint hand-object pose estimation in sparsely annotated videos项目地址:https://gitcode.com/gh_mirrors/ha/handobjectconsist

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黎启炼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值