Locomotive Scroll 使用教程

Locomotive Scroll 使用教程

locomotive-scroll🛤 Detection of elements in viewport & smooth scrolling with parallax.项目地址:https://gitcode.com/gh_mirrors/lo/locomotive-scroll

项目介绍

Locomotive Scroll 是一个轻量级的滚动库,由 Locomotive 开发。它提供了平滑滚动和视差效果的支持,可以在元素进入视口时切换类和触发事件监听器。该库建立在 ayamflow 的 virtual-scroll 之上,适用于需要平滑滚动和视差效果的网页项目。

项目快速启动

安装

首先,通过 npm 安装 Locomotive Scroll:

npm install locomotive-scroll

引入和初始化

在你的 JavaScript 文件中引入并初始化 Locomotive Scroll:

import LocomotiveScroll from 'locomotive-scroll';

const scroll = new LocomotiveScroll({
    el: document.querySelector('[data-scroll-container]'),
    smooth: true
});

HTML 结构

确保你的 HTML 结构包含 data-scroll-container 属性:

<div data-scroll-container>
    <div data-scroll-section>
        <h1 data-scroll data-scroll-speed="2">欢迎使用 Locomotive Scroll</h1>
        <p data-scroll data-scroll-speed="1">这是一个平滑滚动的示例。</p>
    </div>
</div>

应用案例和最佳实践

应用案例

Locomotive Scroll 广泛应用于需要平滑滚动和视差效果的网站,如创意机构、产品展示页面和个人作品集。以下是一些使用 Locomotive Scroll 的网站案例:

  • Humana Studio: 一个创意设计工作室的网站,利用 Locomotive Scroll 实现流畅的滚动和视差效果。
  • Age of Union: 一个关注环境保护的网站,通过 Locomotive Scroll 增强了用户体验。

最佳实践

  • 性能优化: 确保在移动设备和低性能设备上测试滚动效果,避免过度使用视差效果导致性能问题。
  • 可访问性: 确保滚动效果不会影响用户的可访问性,例如,确保键盘和屏幕阅读器用户可以正常浏览页面。

典型生态项目

Locomotive Scroll 可以与其他流行的前端库和框架结合使用,例如:

  • GSAP (GreenSock Animation Platform): 结合 GSAP 可以实现更复杂的动画效果。
  • React: 通过 React 组件封装 Locomotive Scroll,使其更易于在 React 项目中使用。
  • Three.js: 结合 Three.js 可以实现 3D 滚动效果和交互。

通过这些生态项目的结合,可以扩展 Locomotive Scroll 的功能,创造出更加丰富和动态的用户体验。

locomotive-scroll🛤 Detection of elements in viewport & smooth scrolling with parallax.项目地址:https://gitcode.com/gh_mirrors/lo/locomotive-scroll

### 大模型对齐微调DPO方法详解 #### DPO简介 直接偏好优化(Direct Preference Optimization, DPO)是一种用于改进大型语言模型行为的技术,该技术通过结合奖励模型训练和强化学习来提升训练效率与稳定性[^1]。 #### 实现机制 DPO的核心在于它能够依据人类反馈调整模型输出的概率分布。具体来说,当给定一对候选响应时,DPO试图使更受偏好的那个选项具有更高的生成概率。这种方法不仅简化了传统强化学习所需的复杂环境设置,而且显著增强了模型对于多样化指令的理解能力和执行精度[^2]。 #### PAI平台上的实践指南 为了便于开发者实施这一先进理念,在PAI-QuickStart框架下提供了详尽的操作手册。这份文档覆盖了从环境配置直至完成整个微调流程所需的一切细节,包括但不限于数据准备、参数设定以及性能评估等方面的内容。尤其值得注意的是,针对阿里云最新发布的开源LLM——Qwen2系列,文中给出了具体的实例说明,使得即使是初次接触此类工作的用户也能顺利上手。 ```python from transformers import AutoModelForCausalLM, Trainer, TrainingArguments model_name_or_path = "qwen-model-name" tokenizer_name = model_name_or_path training_args = TrainingArguments( output_dir="./results", per_device_train_batch_size=8, num_train_epochs=3, ) trainer = Trainer( model_init=lambda: AutoModelForCausalLM.from_pretrained(model_name_or_path), args=training_args, train_dataset=train_dataset, ) # 假设已经定义好了train_dataset trainer.train() ``` 这段代码片段展示了如何使用Hugging Face库加载预训练模型并对其进行微调的过程。虽然这里展示的例子并不完全对应于DPO的具体实现方式,但它提供了一个基础模板供进一步定制化开发之用[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

乔嫣忱

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值