GGanalysis 开源项目教程

GGanalysis 开源项目教程

GGanalysis 抽卡游戏概率分析工具包 A simple and efficient computing package for analysis gacha in game GGanalysis 项目地址: https://gitcode.com/gh_mirrors/gg/GGanalysis

1. 项目介绍

GGanalysis 是一个专注于抽卡游戏概率分析的工具包。它提供了一套简单而高效的计算模块,帮助开发者快速构建和分析抽卡游戏的概率模型。通过引入“抽卡层”概念,GGanalysis 能够以较低的时间复杂度计算复杂的抽卡逻辑,并提供可视化的绘图工具。此外,工具包还支持多种游戏的抽卡模型,如《原神》、《崩坏:星穹铁道》等。

2. 项目快速启动

2.1 环境配置

GGanalysis 依赖于 numpyscipymatplotlib 库。请确保在 Python 3.9 及以上环境中安装这些库。

pip install numpy scipy matplotlib

2.2 安装 GGanalysis

可以通过以下命令从 GitHub 克隆并安装 GGanalysis:

git clone https://github.com/OneBST/GGanalysis.git
cd GGanalysis
pip install .

2.3 快速使用示例

以下是一个简单的示例,展示如何使用 GGanalysis 计算《原神》角色池的抽卡分布:

import GGanalysis.games.genshin_impact as GI

# 计算在垫了20抽,有大保底的情况下抽3个UP五星抽数的分布
dist_c = GI.up_5star_character(item_num=3, item_pity=20, up_pity=1)
print('期望为', dist_c.exp, '方差为', dist_c.var, '分布为', dist_c.dist)

3. 应用案例和最佳实践

3.1 应用案例

GGanalysis 可以应用于多种抽卡游戏的概率分析,例如:

  • 《原神》角色池分析:计算在不同垫抽数和大保底情况下的抽卡分布。
  • 《崩坏:星穹铁道》遗器模型分析:模拟随机提升副词条的模型,计算词条分布。

3.2 最佳实践

  • 自定义抽卡模型:GGanalysis 允许用户自定义抽卡模型,通过组合不同的抽卡层来实现复杂的抽卡逻辑。
  • 可视化结果:使用工具包提供的绘图工具,将计算结果可视化,便于分析和展示。

4. 典型生态项目

GGanalysis 作为一个专注于抽卡游戏概率分析的工具包,其生态项目主要包括:

  • 数据分析工具:如 Jupyter Notebook,用于交互式地分析和展示抽卡数据。
  • 可视化库:如 Matplotlib,用于绘制抽卡分布图和其他统计图表。
  • 游戏数据平台:如 Kaggle,用于收集和分析大量游戏抽卡数据,验证和优化 GGanalysis 的模型。

通过这些生态项目的支持,GGanalysis 能够更好地服务于游戏开发者和数据分析师,帮助他们更高效地进行抽卡游戏的概率分析。

GGanalysis 抽卡游戏概率分析工具包 A simple and efficient computing package for analysis gacha in game GGanalysis 项目地址: https://gitcode.com/gh_mirrors/gg/GGanalysis

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

秦凡湛Sheila

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值