GGanalysis 开源项目教程
1. 项目介绍
GGanalysis 是一个专注于抽卡游戏概率分析的工具包。它提供了一套简单而高效的计算模块,帮助开发者快速构建和分析抽卡游戏的概率模型。通过引入“抽卡层”概念,GGanalysis 能够以较低的时间复杂度计算复杂的抽卡逻辑,并提供可视化的绘图工具。此外,工具包还支持多种游戏的抽卡模型,如《原神》、《崩坏:星穹铁道》等。
2. 项目快速启动
2.1 环境配置
GGanalysis 依赖于 numpy
、scipy
和 matplotlib
库。请确保在 Python 3.9 及以上环境中安装这些库。
pip install numpy scipy matplotlib
2.2 安装 GGanalysis
可以通过以下命令从 GitHub 克隆并安装 GGanalysis:
git clone https://github.com/OneBST/GGanalysis.git
cd GGanalysis
pip install .
2.3 快速使用示例
以下是一个简单的示例,展示如何使用 GGanalysis 计算《原神》角色池的抽卡分布:
import GGanalysis.games.genshin_impact as GI
# 计算在垫了20抽,有大保底的情况下抽3个UP五星抽数的分布
dist_c = GI.up_5star_character(item_num=3, item_pity=20, up_pity=1)
print('期望为', dist_c.exp, '方差为', dist_c.var, '分布为', dist_c.dist)
3. 应用案例和最佳实践
3.1 应用案例
GGanalysis 可以应用于多种抽卡游戏的概率分析,例如:
- 《原神》角色池分析:计算在不同垫抽数和大保底情况下的抽卡分布。
- 《崩坏:星穹铁道》遗器模型分析:模拟随机提升副词条的模型,计算词条分布。
3.2 最佳实践
- 自定义抽卡模型:GGanalysis 允许用户自定义抽卡模型,通过组合不同的抽卡层来实现复杂的抽卡逻辑。
- 可视化结果:使用工具包提供的绘图工具,将计算结果可视化,便于分析和展示。
4. 典型生态项目
GGanalysis 作为一个专注于抽卡游戏概率分析的工具包,其生态项目主要包括:
- 数据分析工具:如 Jupyter Notebook,用于交互式地分析和展示抽卡数据。
- 可视化库:如 Matplotlib,用于绘制抽卡分布图和其他统计图表。
- 游戏数据平台:如 Kaggle,用于收集和分析大量游戏抽卡数据,验证和优化 GGanalysis 的模型。
通过这些生态项目的支持,GGanalysis 能够更好地服务于游戏开发者和数据分析师,帮助他们更高效地进行抽卡游戏的概率分析。