Awesome-LLM-Uncertainty-Reliability-Robustness 项目教程
1. 项目的目录结构及介绍
目录结构
Awesome-LLM-Uncertainty-Reliability-Robustness/
├── README.md
├── requirements.txt
├── data/
├── models/
├── notebooks/
├── scripts/
├── tests/
└── config/
目录介绍
- README.md: 项目说明文件,包含项目的基本信息和使用指南。
- requirements.txt: 项目依赖文件,列出了运行项目所需的Python包。
- data/: 存放项目所需的数据文件。
- models/: 存放训练好的模型文件。
- notebooks/: 存放Jupyter Notebook文件,用于数据分析和模型训练。
- scripts/: 存放项目的脚本文件,包括数据处理、模型训练等脚本。
- tests/: 存放测试文件,用于测试项目的各个模块。
- config/: 存放项目的配置文件。
2. 项目的启动文件介绍
项目的启动文件通常位于 scripts/
目录下。以下是一个典型的启动文件示例:
# scripts/train.py
import argparse
from models import MyModel
from data import DataLoader
from config import Config
def main():
parser = argparse.ArgumentParser(description="Train the model")
parser.add_argument("--config", type=str, default="config/default.yaml", help="Path to the config file")
args = parser.parse_args()
config = Config(args.config)
data_loader = DataLoader(config)
model = MyModel(config)
model.train(data_loader)
if __name__ == "__main__":
main()
启动文件介绍
- train.py: 用于训练模型的启动文件。
- argparse: 用于解析命令行参数。
- models.MyModel: 自定义的模型类。
- data.DataLoader: 数据加载器类。
- config.Config: 配置文件类。
3. 项目的配置文件介绍
项目的配置文件通常位于 config/
目录下。以下是一个典型的配置文件示例:
# config/default.yaml
data:
path: "data/dataset.csv"
batch_size: 32
model:
learning_rate: 0.001
num_layers: 5
training:
epochs: 10
save_path: "models/trained_model.pth"
配置文件介绍
- default.yaml: 默认的配置文件。
- data: 数据相关的配置,包括数据路径和批次大小。
- model: 模型相关的配置,包括学习率和层数。
- training: 训练相关的配置,包括训练轮数和模型保存路径。
通过以上内容,您可以了解项目的目录结构、启动文件和配置文件的基本信息,从而更好地使用和配置该项目。