GOPT项目使用指南

GOPT项目使用指南

goptCode for the ICASSP 2022 paper "Transformer-Based Multi-Aspect Multi-Granularity Non-native English Speaker Pronunciation Assessment".项目地址:https://gitcode.com/gh_mirrors/go/gopt

项目介绍

GOPT(Goodness Of Pronunciation Feature-Based Transformer)是一个基于Transformer的多方面多粒度非母语英语发音评估模型。该项目由Yuan Gong等人在ICASSP 2022会议上提出,旨在同时考虑多个发音质量方面(如准确性、流畅性、韵律等)。GOPT是首个能够同时处理这些方面的模型,适用于非母语英语学习者的发音评估。

项目快速启动

环境准备

确保你有一个支持Python的开发环境,推荐使用Google Colab或本地安装Python。

安装依赖

pip install -r requirements.txt

下载预训练模型

预训练模型位于gopt/pretrained_models/目录下。

运行评估

cd gopt/src
# 对于slurm用户
sbatch run.sh
# 对于本地用户
./run.sh

评估结果将保存在exp_dir指定的目录中。

应用案例和最佳实践

案例一:非母语英语学习者发音评估

使用GOPT模型对非母语英语学习者的发音进行评估,可以得到详细的发音质量评分,包括准确性、流畅性和韵律等方面。

案例二:语音识别系统优化

通过分析GOPT的评估结果,可以对语音识别系统进行优化,提高对非母语英语发音的识别准确率。

最佳实践

  • 数据准备:确保使用高质量的语音数据进行训练和评估。
  • 模型调优:根据具体应用场景调整模型参数,以达到最佳性能。
  • 持续更新:定期更新模型,以适应新的发音特征和评估需求。

典型生态项目

Kaldi

Kaldi是一个开源的语音识别工具包,广泛用于语音识别和发音评估。GOPT项目可以与Kaldi结合使用,提取和处理语音特征。

PyTorch

GOPT项目基于PyTorch实现,PyTorch提供了强大的深度学习框架支持,便于模型的训练和部署。

Speechocean762

Speechocean762是一个用于发音评估的大型语音数据集,GOPT项目可以使用该数据集进行训练和评估,提高模型的泛化能力。

通过以上模块的介绍和实践,用户可以快速上手并应用GOPT项目进行非母语英语发音评估,同时了解相关的生态项目和最佳实践。

goptCode for the ICASSP 2022 paper "Transformer-Based Multi-Aspect Multi-Granularity Non-native English Speaker Pronunciation Assessment".项目地址:https://gitcode.com/gh_mirrors/go/gopt

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黎崧孟Lolita

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值