《LLM Engineering》项目安装与配置指南
1. 项目基础介绍
《LLM Engineering》是一个开源项目,旨在通过一系列的课程和项目,教授人们如何掌握大型语言模型(LLM)的工程化应用。本项目涵盖从基础理论到实际应用的全过程,使用户能够在8周内逐步提升自己的技能,最终构建出具有自主决策能力的AI解决方案。
主要编程语言:Python
2. 项目使用的关键技术和框架
- Ollama:一个开源的LLM框架,用于快速部署和运行LLM模型。
- OpenAI:一个用于访问OpenAI提供的各种AI模型的API。
- Hugging Face:提供了一系列的自然语言处理模型和框架,用于文本分析、生成等任务。
- Google Colab:一个基于云的Python笔记本环境,提供了免费的计算资源,包括GPU。
3. 项目安装和配置的准备工作
在开始安装之前,请确保您的计算机满足以下要求:
- 操作系统:本项目支持Windows、macOS和Linux系统。
- Python环境:Python 3.7及以上版本。
- 网络连接:安装过程中需要稳定的网络连接。
安装步骤
步骤1:安装Python
前往Python官方网站下载并安装Python,确保安装过程中勾选了“Add Python to PATH”选项。
步骤2:安装Ollama
-
打开命令行(Windows)或终端(macOS/Linux)。
-
执行以下命令安装Ollama:
pip install ollama
步骤3:安装项目依赖
-
从GitHub克隆项目到本地:
git clone https://github.com/ed-donner/llm_engineering.git
-
进入项目目录:
cd llm_engineering
-
根据您的操作系统,选择相应的设置指南(SETUP-PC.md、SETUP-mac.md或SETUP-linux.md)并按照指示进行配置。
步骤4:配置Ollama
-
在命令行中执行以下命令以拉取llama3.2模型:
ollama pull llama3.2
-
根据项目中的示例,配置Ollama的API:
from openai import OpenAI MODEL = "llama3.2" openai = OpenAI(base_url="http://localhost:11434/v1", api_key="ollama")
步骤5:运行示例代码
在项目目录中,找到week1/solutions/day1_with_ollama.ipynb
笔记本文件,使用Jupyter Notebook打开并执行其中的代码,以验证安装是否成功。
至此,您已经完成了《LLM Engineering》项目的安装和配置。接下来,您可以按照项目的教程和指南,逐步深入学习LLM的工程化应用。祝您学习愉快!