在复杂环境中检测并读取仪表:一款强大的开源项目

在复杂环境中检测并读取仪表:一款强大的开源项目

Detect-and-read-meters This is the first released system towards complex meters` detection and recognition, which is implemented by computer vision techniques. Detect-and-read-meters 项目地址: https://gitcode.com/gh_mirrors/de/Detect-and-read-meters

项目介绍

在工业自动化和智能监控领域,准确读取各种仪表的数值是至关重要的。然而,在复杂的环境中,如光线变化、背景干扰等因素,传统的仪表读取方法往往难以胜任。为了解决这一问题,我们推出了一款名为“Detect and Read meters in the wild”的开源项目。该项目旨在通过先进的计算机视觉技术,实现对复杂环境中仪表的自动检测与数值读取。

项目技术分析

该项目的技术架构分为三个主要模块:

  1. 仪表检测:采用基于YOLO-V5的目标检测算法,能够快速准确地从复杂背景中提取出仪表区域。
  2. 仪表对齐:通过空间变换网络(STN)对提取出的仪表区域进行位置校正,确保后续识别的准确性。
  3. 仪表读取:设计了一个端到端的网络,结合指针预测、刻度预测和基于OCR的数值预测,最终通过后处理方法输出准确的仪表读数。

项目及技术应用场景

该项目的应用场景非常广泛,包括但不限于:

  • 工业自动化:在工厂环境中,自动读取各种仪表的数值,实现设备的智能监控和故障预警。
  • 智能监控:在公共设施或家庭环境中,实时监控水表、电表等仪表的数值,提供数据支持。
  • 能源管理:在能源行业,自动读取各种能源仪表的数值,帮助企业进行能源消耗分析和优化。

项目特点

  1. 高精度检测:基于YOLO-V5的检测算法,能够在复杂环境中快速准确地定位仪表。
  2. 智能对齐:通过STN网络对仪表进行位置校正,确保后续识别的准确性。
  3. 端到端识别:设计了专门的网络结构,结合多种预测方法,实现仪表数值的准确读取。
  4. 开源易用:项目代码完全开源,提供了详细的安装和使用文档,用户可以轻松上手。

如何开始

安装要求

  • Python3(推荐Python3.7)
  • PyTorch >= 1.0
  • torchvision
  • numpy
  • skimage
  • OpenCV==3.0.x
  • CUDA >= 9.0(推荐10.0)

数据集与权重

  • 仪表检测数据集:可以从这里下载。
  • YOLO-V5权重:可以从这里下载。
  • 仪表对齐权重:可以从这里下载。
  • 仪表读取权重:可以从这里下载。

运行示例

你可以通过运行以下命令来测试单张图像的仪表读取:

python predict_online.py

结语

“Detect and Read meters in the wild”项目不仅为工业自动化和智能监控提供了强大的技术支持,还为学术研究提供了宝贵的资源。如果你对这个项目感兴趣,欢迎访问我们的GitHub仓库,并给我们一个Star!同时,如果你在研究中使用了该项目,请引用我们的论文。

@misc{shu2023read,
      title={Read Pointer Meters in complex environments based on a Human-like Alignment and Recognition Algorithm}, 
      author={Yan Shu and Shaohui Liu and Honglei Xu and Feng Jiang},
      year={2023},
      eprint={2302.14323},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

希望这个项目能够帮助你在复杂环境中轻松实现仪表的检测与读取!

Detect-and-read-meters This is the first released system towards complex meters` detection and recognition, which is implemented by computer vision techniques. Detect-and-read-meters 项目地址: https://gitcode.com/gh_mirrors/de/Detect-and-read-meters

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

王海高Eudora

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值