CNNDetection开源项目安装与使用教程

CNNDetection开源项目安装与使用教程

CNNDetection Code for the paper: CNN-generated images are surprisingly easy to spot... for now https://peterwang512.github.io/CNNDetection/ CNNDetection 项目地址: https://gitcode.com/gh_mirrors/cn/CNNDetection

1. 项目目录结构及介绍

项目目录结构如下:

CNNDetection/
├── data/                  # 数据集目录
│   ├── dataset/           # 数据集子目录
│   │   ├── test/         # 测试集目录
│   │   ├── train/        # 训练集目录
│   │   └── val/          # 验证集目录
├── demos/                 # 示例代码目录
│   ├── demo.py            # 单图像检测示例脚本
│   ├── demo_dir.py        # 数据集检测示例脚本
│   └── demo_dir.py        # 数据集检测示例脚本
├── earlystop.py           # 早停机制脚本
├── eval/                  # 评估代码目录
│   ├── eval.py            # 评估脚本
│   └── eval_config.py     # 评估配置脚本
├── LICENSE.txt            # 许可证文件
├── networks/              # 网络模型目录
├── options/               # 配置选项目录
├── README.md              # 项目说明文件
├── requirements.txt       # 依赖包文件
├── train.py               # 训练脚本
├── util.py                # 工具脚本
├── validate.py            # 验证脚本
├── weights/               # 预训练权重目录
│   └── download_weights.sh # 下载权重脚本

目录详细介绍:

  • data/: 存放数据集的目录,包括测试集、训练集和验证集。
  • demos/: 包含示例代码,用于演示如何使用预训练模型进行图像检测。
  • earlystop.py: 实现早停机制的脚本,用于训练过程中的早停。
  • eval/: 包含评估代码,用于评估模型的性能。
  • LICENSE.txt: 项目许可证文件。
  • networks/: 包含网络模型的定义。
  • options/: 包含配置选项文件。
  • README.md: 项目说明文件,包含项目介绍和使用方法。
  • requirements.txt: 列出项目所需的依赖包。
  • train.py: 训练脚本,用于训练模型。
  • util.py: 包含一些工具函数。
  • validate.py: 验证脚本,用于验证模型性能。
  • weights/: 存放预训练权重的目录,包含下载权重脚本。

2. 项目启动文件介绍

2.1 demo.py

demo.py 是用于单图像检测的示例脚本。使用方法如下:

python demo.py -f examples/real.png -m weights/blur_jpg_prob0.5.pth
  • -f 参数指定待检测的图像文件路径。
  • -m 参数指定预训练模型的权重文件路径。

2.2 demo_dir.py

demo_dir.py 是用于数据集检测的示例脚本。使用方法如下:

python demo_dir.py -d examples/realfakedir -m weights/blur_jpg_prob0.5.pth
  • -d 参数指定包含真实和伪造图像的目录路径。
  • -m 参数指定预训练模型的权重文件路径。

2.3 train.py

train.py 是用于训练模型的脚本。使用方法如下:

python train.py --name blur_jpg_prob0.5 --blur_prob 0.5 --blur_sig 0.0 --jpg_prob 0.5 --jpg_method cv2 --jpg_qual 30 --dataroot /dataset/ --classes airplane,bird,bicycle,boat,bottle,bus,car,cat,cow,chair,diningtable,dog,person,pottedplant,motorbike,tvmonitor,train,sheep,sofa,horse
  • --name 参数指定模型名称。
  • --blur_prob--blur_sig--jpg_prob--jpg_method--jpg_qual 参数用于设置数据增强的参数。
  • --dataroot 参数指定数据集的根目录。
  • --classes 参数指定训练类别。

3. 项目配置文件介绍

3.1 eval_config.py

eval_config.py 是评估配置脚本,用于设置评估过程中的参数。主要参数如下:

  • dataset_path: 指定数据集的路径。
  • model_path: 指定模型权重的路径。
  • batch_size: 指定批量大小。
  • no_crop: 是否进行中心裁剪。

3.2 options/

options/ 目录包含了一些配置选项文件,用于设置训练和评估过程中的参数。具体文件和参数可根据需要进行修改。

3.3 requirements.txt

requirements.txt 列出了项目所需的依赖包,可以通过以下命令安装:

pip install -r requirements.txt

以上是CNNDetection开源项目的目录结构、启动文件和配置文件的详细介绍,希望对您有所帮助。

CNNDetection Code for the paper: CNN-generated images are surprisingly easy to spot... for now https://peterwang512.github.io/CNNDetection/ CNNDetection 项目地址: https://gitcode.com/gh_mirrors/cn/CNNDetection

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

王海高Eudora

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值