AutoMask 使用教程

AutoMask 使用教程

AutoMaskAutomatic Rotoscoping/Masking tool powered with Machine Learning for Blender (WIP)项目地址:https://gitcode.com/gh_mirrors/au/AutoMask

1、项目介绍

AutoMask 是一个为 Blender 设计的自动旋转/遮罩工具,利用机器学习技术实现。该项目是一个 Blender 插件,可以在 Blender 的 Movie Clip Editor 中自动遮罩对象。AutoMask 通过与 SiamMask 的通信来实现这一功能。

2、项目快速启动

安装步骤

  1. 克隆仓库

    git clone https://github.com/lukas-blecher/AutoMask.git
    
  2. 安装依赖

    pip install -r requirements.txt
    
  3. 下载模型权重: 从 这里 下载模型权重,并保存到 trackers/SiamMask 目录下,命名为 model.pth

  4. 添加到 Blender: 将 AutoMask 插件添加到 Blender 中,具体步骤请参考 Blender 插件安装文档。

使用步骤

  1. 选择对象: 在 Blender 中选择要遮罩的对象的边界框。

  2. 跟踪按钮: 点击其中一个跟踪按钮,遮罩会为每一帧保存到一个新的遮罩层中。

  3. 参数设置

    • Max Length:设置遮罩段的最大像素数。
    • Directions:设置遮罩段可以覆盖的方向数。
    • Threshold:设置可以进入另一个方向的像素数。

3、应用案例和最佳实践

应用案例

AutoMask 可以用于电影制作、动画制作和视频编辑中,自动生成遮罩可以大大提高工作效率。例如,在制作动画时,可以使用 AutoMask 自动生成角色的遮罩,从而节省手动绘制遮罩的时间。

最佳实践

  • 调整参数:根据具体需求调整 Max Length、Directions 和 Threshold 参数,以获得最佳的遮罩效果。
  • 结合其他工具:将 AutoMask 与其他 Blender 插件和工具结合使用,可以进一步提高工作效率。

4、典型生态项目

SiamMask

SiamMask 是一个基于 PyTorch 的实时目标跟踪系统,AutoMask 利用 SiamMask 的模型权重来实现遮罩功能。SiamMask 的详细信息可以参考其 官方文档

Blender

Blender 是一个开源的 3D 创作套件,支持 3D 建模、动画、模拟、渲染等。AutoMask 作为一个 Blender 插件,与 Blender 的生态系统紧密结合,为用户提供了一个强大的遮罩工具。

通过以上教程,您可以快速上手使用 AutoMask 插件,并了解其在实际应用中的最佳实践和相关生态项目。希望 AutoMask 能为您的创作带来便利和效率提升。

AutoMaskAutomatic Rotoscoping/Masking tool powered with Machine Learning for Blender (WIP)项目地址:https://gitcode.com/gh_mirrors/au/AutoMask

数据集介绍:多物种动物目标检测数据集 一、基础信息 数据集名称:多物种动物目标检测数据集 图片数量: - 训练集:7,767张 - 验证集:2,219张 - 测试集:1,110张 总计:11,096张覆盖多场景的动物图片 分类类别: 涵盖75个动物类别,包括: - 大型哺乳动物(熊、大象、长颈鹿、犀牛) - 珍稀物种(熊猫、红熊猫、树袋熊、海豹) - 水生生物(鲨鱼、海龟、水母、螃蟹) - 飞禽与昆虫(鹰、鹦鹉、蝴蝶、瓢虫) - 常见家畜(牛、马、猪、山羊) 标注格式: YOLO格式,含归一化边界框坐标及类别编号,可直接适配YOLOv5/v7/v8等主流框架。 二、适用场景 野生动物监测系统开发: 支持无人机航拍或野外摄像头数据中的动物识别,用于生物多样性研究和偷猎预警。 农业智能化管理: 检测农场牲畜(牛、羊、鸡)的健康状态与行为模式,优化养殖管理效率。 自然教育应用: 集成至AR自然观察工具,实时识别动物种类并提供生态知识讲解。 生物研究数据库建设: 为动物行为学、物种分布研究提供结构化视觉数据支撑。 安防边界预警: 识别特定危险动物(鳄鱼、毒蛇、蝎子),用于营地安全监控系统。 三、数据集优势 物种覆盖全面性: 包含陆地、水生、飞行等生态位的75类动物,涵盖从微型昆虫(瓢虫)到巨型生物(鲸鱼)的尺度跨度。 场景多样性: 整合航拍、地面拍摄、近距离特写等多视角数据,增强模型环境适应能力。 标注专业度: 严格校验的YOLO标注数据,边界框精准匹配动物形态特征,支持复杂遮挡场景检测。 跨领域适用性: 同时满足生态保护、农业管理、教育娱乐等多领域需求,提供从动物检测到细粒度分类的扩展能力。 模型兼容性: 标准YOLO格式支持快速迁移学习,可基于现有权重进行物种定制化模型开发。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

尤歌泽Vigour

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值