深入解析Suor/funcy项目中的集合操作工具
funcy A fancy and practical functional tools 项目地址: https://gitcode.com/gh_mirrors/fu/funcy
Suor/funcy项目提供了一系列强大的集合操作工具,能够显著提升Python开发者在处理各种数据结构时的效率和代码可读性。本文将全面介绍该项目中的集合处理功能,帮助开发者更好地理解和应用这些实用工具。
集合合并操作
merge与join函数
merge()
函数是处理集合合并的核心工具,它能够智能地合并多个同类型集合,支持字典、集合、列表、元组、迭代器和字符串等多种数据结构。对于字典类型,后出现的字典键值会覆盖前面字典中相同的键。
def utility(**options):
defaults = {...}
options = merge(defaults, options) # 合并默认值和传入参数
...
join()
函数与merge()
功能类似,但接受一个可迭代的集合作为参数,而不是多个独立参数。当不需要保持集合类型时,可以考虑使用concat
或lconcat
函数。
集合转换与筛选
walk系列函数
walk()
函数能够保持原集合类型不变,对其所有元素应用指定函数:
walk(inc, {1, 2, 3}) # 返回 {2, 3, 4}
walk(inc, (1, 2, 3)) # 返回 (2, 3, 4)
处理字典时,walk函数会接收(key, value)对作为参数,这使得交换键值对变得非常简单:
swap = lambda k, v: (v, k)
walk(swap, {1: 10, 2: 20})
walk_keys()
和walk_values()
则专门针对字典的键或值进行转换:
walk_keys(str.upper, {'a': 1, 'b': 2}) # 键转为大写
walk_values(int, form_values) # 值转为整数
select系列函数
select()
函数根据谓词条件筛选集合元素:
select(even, {1, 2, 3, 10, 20}) # 返回 {2, 10, 20}
select_keys()
和select_values()
则专门针对字典的键或值进行筛选:
is_public = complement(re_tester('^_'))
public = select_keys(is_public, instance.__dict__) # 筛选公开属性
compact()
函数可以移除集合中的假值元素:
compact(walk_values(silent(int), request_dict)) # 提取有效的整数数据
字典专用工具
高级合并操作
merge_with()
和join_with()
提供了更灵活的字典合并方式,可以指定相同键值的合并策略:
merge_with(list, {1: 1}, {1: 10, 2: 2}) # 返回 {1: [1, 10], 2: [2]}
merge_with(sum, {1: 1}, {1: 10, 2: 2}) # 返回 {1: 11, 2: 2}
字典构造与转换
zipdict()
函数通过键和值序列构建字典:
zipdict('abcd', range(4)) # 返回 {'a': 0, 'b': 1, 'c': 2, 'd': 3}
flip()
函数可以交换字典的键和值:
flip(OrderedDict(['aA', 'bB'])) # 返回 OrderedDict([('A', 'a'), ('B', 'b')])
字典投影与过滤
project()
和omit()
函数提供了字典的投影和过滤功能:
project(__builtins__, names) # 从内置函数中提取指定名称
omit({'a': 1, 'b': 2, 'c': 3}, 'ac') # 返回 {'b': 2}
嵌套字典操作
get_in()
和set_in()
等函数提供了对嵌套字典的安全访问和修改:
get_in({"a": {"b": 42}}, ["a", "b"]) # 返回 42
set_in({"a": {"b": 42}}, ["a", "b"], 10) # 返回 {"a": {"b": 10}}
数据查询与处理
where()
和lwhere()
函数提供了类似数据库查询的功能:
lwhere(plays, author="Shakespeare", year=1611) # 查询莎士比亚1611年的作品
pluck()
和pluck_attr()
函数可以方便地从对象集合中提取属性:
lpluck('name', [{'name': 'John'}, {'name': 'Mary'}]) # 返回 ['John', 'Mary']
lpluck_attr('id', users) # 从用户对象集合中提取ID列表
集合内容检测
is_distinct()
函数检查集合元素是否互不相同:
assert is_distinct(field_names), "字段名必须唯一"
all()
, any()
, none()
, one()
和some()
提供了丰富的集合内容检测功能:
all(isa(int), seq) # 检查所有元素是否为整数
none(' ', names) # 检查名称中是否不含空格
底层辅助工具
empty()
函数可以创建与输入集合同类型的空集合:
empty([1, 2, 3]) # 返回 []
empty({'a': 1}) # 返回 {}
iteritems()
和itervalues()
提供了统一的集合元素迭代方式:
list(iteritems({'a': 1})) # 返回 [('a', 1)]
list(itervalues({'a': 1})) # 返回 [1]
通过掌握Suor/funcy项目中的这些集合操作工具,开发者可以大幅提升数据处理代码的简洁性和效率,让Python编程变得更加优雅和高效。
funcy A fancy and practical functional tools 项目地址: https://gitcode.com/gh_mirrors/fu/funcy
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考