探索图像增强新境界:FourLLIE项目引领低光图像处理革新

探索图像增强新境界:FourLLIE项目引领低光图像处理革新

FourLLIE This is the official pytorch implementation of "FourLLIE: Boosting Low-Light Image Enhancement by Fourier Frequency Information" (ACM MM 2023) FourLLIE 项目地址: https://gitcode.com/gh_mirrors/fo/FourLLIE

项目介绍

FourLLIE(Fourier Frequency Information Enhanced Low-Light Image Enhancement)是一个基于PyTorch的开源项目,旨在通过傅里叶频率信息提升低光图像质量。该项目是"Boosting Low-Light Image Enhancement by Fourier Frequency Information"论文的官方实现,已经在ACM MM 2023上发表。FourLLIE通过一个创新的两阶段框架,利用傅里叶空间的幅度变换图增强图像亮度,并结合信噪比(SNR)图融合全局傅里叶频率与局部空间信息,恢复图像细节,显著提升了低光图像的增强效果。

pipeline

项目技术分析

FourLLIE的核心技术亮点在于:

  1. 傅里叶变换应用:在第一阶段,项目通过估计傅里叶空间中的幅度变换图来提升图像亮度,这一步骤有效地利用了频域的信息处理优势。
  2. 信噪比图引入:第二阶段中引入的SNR图,为融合全局频率和局部空间信息提供了先验知识,有助于在空间域中恢复图像细节。

这一技术框架不仅提高了图像质量,而且保持了模型的效率,使其在低光图像增强领域达到了新的技术水平。

项目及技术应用场景

FourLLIE可以被应用于多种场景中,例如:

  • 移动设备:提升手机在低光环境下的拍照效果。
  • 监控安全:增强监控摄像头在夜间或光线不足条件下的图像质量。
  • 无人机与自动驾驶:在光线受限的条件下,提高视觉系统的感知能力。

项目特点

  • 效率与效果并重:FourLLIE在保证模型效率的同时,提供卓越的图像增强效果。
  • 开源友好:项目遵循开源协议,提供了完整的训练和测试配置,用户可以根据自己的需求进行调整。
  • 丰富的数据集支持:项目支持LOL-real、LOL-sys、LSRW-Huawei和LSRW-Nikon等多个数据集,为研究者提供了广泛的测试和验证基础。
  • 预训练模型:提供了预训练模型,方便用户快速体验项目效果。

如果您对低光图像增强感兴趣,FourLLIE项目绝对值得一试。它不仅代表了当前该领域的前沿技术,还能为您的图像处理工作提供强大的支持。立即开始使用FourLLIE,开启您的图像增强新旅程吧!

FourLLIE This is the official pytorch implementation of "FourLLIE: Boosting Low-Light Image Enhancement by Fourier Frequency Information" (ACM MM 2023) FourLLIE 项目地址: https://gitcode.com/gh_mirrors/fo/FourLLIE

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

江奎钰

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值