Monner:轻量级程序资源监控工具,提升你的效率神器
monnermonner项目地址:https://gitcode.com/gh_mirrors/mo/monner
项目介绍
Monner,由Colin Howe开发并采用Apache 2.0许可协议,是一个简洁高效的系统监控工具。它专注于在执行特定程序时实时追踪CPU、内存和网络使用情况,其特别设计的输出格式(制表符分隔)能无缝对接到各类电子表格软件中,为性能分析和优化工作提供了极大的便利。
项目技术分析
Monner基于Python 3.3及以上版本构建,利用Python强大的标准库和开发环境,确保了跨平台的兼容性和易部署性。它通过直接监控目标程序的运行状态,获取精准的资源消耗数据。对于开发者而言,它的实现机制高效且轻量,保证了在监控过程中的低资源占用,不会对被监测应用或系统的正常运行造成影响。此外,通过命令行接口的灵活配置,Monner能够适应多种场景下的监控需求,无论是简单的性能测试还是复杂的持续集成流程。
项目及技术应用场景
在当今的软件开发和运维环境中,Monner的应用场景极为广泛:
- 开发调试:帮助开发者快速定位程序的性能瓶颈,如内存泄露或CPU高负载问题。
- 服务器管理:运维人员可以利用Monner监控后台服务的运行状况,及时调整资源配置以保障服务质量。
- 教育科研:学生和研究人员可借助其详细的数据输出进行计算机科学相关的教学实验或研究分析。
- 性能基准测试:对比不同环境下(如不同的操作系统或配置)同一应用的性能差异,进行调优决策。
项目特点
- 简单直观的输出:制表符分隔的输出非常适合数据分析,直接导入Excel或Google Sheets等工具即可进行高级处理。
- 高度定制化:支持监控多个资源指标,满足不同层次的监控需求,使用者可以根据需要选择监视的字段。
- 易于部署和使用:仅需Python 3.3+环境,通过pip或源码安装,命令行操作简便快捷。
- 轻量级:在提供详尽监控的同时,自身保持精简,不增加额外的系统负担。
- 社区反馈友好:开发者积极接受反馈,无论是通过GitHub提交Issue或是Twitter私信,都能得到及时响应。
综上所述,Monner以其独特的便捷性和功能性,在众多系统监控工具中脱颖而出。无论你是编程新手还是经验丰富的工程师,这个开源项目都值得纳入你的工具箱,它能有效协助你在性能分析的道路上走得更远,更轻松。立即尝试Monner,开启你的高效监控之旅吧!
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考