Wolvic XR 浏览器使用教程

Wolvic XR 浏览器使用教程

wolvic A fast and secure browser for standalone virtual-reality and augmented-reality headsets. wolvic 项目地址: https://gitcode.com/gh_mirrors/wo/wolvic

1. 项目介绍

Wolvic 是一个专为虚拟现实(VR)和增强现实(AR)头戴设备设计的快速且安全的浏览器。该项目的目标是为 AR 和 VR 头戴设备提供一个功能齐全的浏览器体验。Wolvic 支持多种设备,包括 Oculus、Huawei、Pico 和 VIVE 等。

2. 项目快速启动

2.1 克隆项目

首先,克隆 Wolvic 项目到本地:

git clone https://github.com/Igalia/wolvic.git
cd wolvic

2.2 克隆第三方库

如果你是为 Oculus、Huawei、Pico 或 VIVE 开发,你需要克隆包含第三方 SDK 文件的仓库:

git clone git@github.com:Igalia/wolvic-third-parties.git third_party

2.3 更新 Git 子模块

你可能需要设置两因素认证:

git submodule update --init --recursive

2.4 构建项目

你可以为不同的设备构建项目,例如 Oculus Quest:

./gradlew assembleOculusvrDebug

2.5 在 Android Studio 中打开项目

使用 Android Studio 打开项目,然后构建并运行。根据你已安装的内容,构建可能会失败并提示你安装依赖项。按照提示操作即可。

3. 应用案例和最佳实践

3.1 在 Oculus Quest 上使用 Wolvic

Oculus Quest 是一款流行的 VR 设备,Wolvic 可以为其提供丰富的浏览器体验。通过 Wolvic,用户可以在 Oculus Quest 上浏览网页、观看视频,甚至进行 WebXR 体验。

3.2 在 Huawei VR Glasses 上使用 Wolvic

Huawei VR Glasses 是华为推出的一款 VR 设备,Wolvic 可以为其提供高效的浏览器功能。用户可以在华为 VR Glasses 上享受沉浸式的网页浏览体验。

4. 典型生态项目

4.1 GeckoView

GeckoView 是 Mozilla 提供的一个用于 Android 的 Web 引擎库。Wolvic 使用 GeckoView 作为其核心引擎,提供强大的 Web 浏览功能。

4.2 OpenXR

OpenXR 是一个开放的标准,旨在为 VR 和 AR 应用程序提供统一的 API。Wolvic 支持 OpenXR,使其能够在多种设备上运行,包括 Oculus、Huawei、Pico 和 VIVE 等。

4.3 WebXR

WebXR 是一个用于创建沉浸式 Web 体验的 API。Wolvic 支持 WebXR,使用户能够在 VR 和 AR 设备上体验沉浸式的 Web 内容。

通过以上模块,你可以快速了解并开始使用 Wolvic XR 浏览器。

wolvic A fast and secure browser for standalone virtual-reality and augmented-reality headsets. wolvic 项目地址: https://gitcode.com/gh_mirrors/wo/wolvic

python+opencv简谱识别音频生成系统源码含GUI界面+详细运行教程+数据 一、项目简介 提取简谱中的音乐信息,依据识别到的信息生成midi文件。 Extract music information from musical scores and generate a midi file according to it. 二、项目运行环境 python=3.11.1 第三方库依赖 opencv-python=4.7.0.68 numpy=1.24.1 可以使用命令 pip install -r requirements.txt 来安装所需的第三方库。 三、项目运行步骤 3.1 命令行运行 运行main.py。 输入简谱路径:支持图片或文件夹,相对路径或绝对路径都可以。 输入简谱主音:它通常在第一页的左上角“1=”之后。 输入简谱速度:即每分钟拍数,同在左上角。 选择是否输出程序中间提示信息:请输入Y或N(不区分大小写,下同)。 选择匹配精度:请输入L或M或H,对应低/中/高精度,一般而言输入L即可。 选择使用的线程数:一般与CPU核数相同即可。虽然python的线程不是真正的多线程,但仍能起到加速作用。 估算字符上下间距:这与简谱中符号的密集程度有关,一般来说纵向符号越稀疏,这个值需要设置得越大,范围通常在1.0-2.5。 二值化算法:使用全局阈值则跳过该选项即可,或者也可输入OTSU、采用大津二值化算法。 设置全局阈值:如果上面选择全局阈值则需要手动设置全局阈值,对于.\test.txt中所提样例,使用全局阈值并在后面设置为160即可。 手动调整中间结果:若输入Y/y,则在识别简谱后会暂停代码,并生成一份txt文件,在其中展示识别结果,此时用户可以通过修改这份txt文件来更正识别结果。 如果选择文件夹的话,还可以选择所选文件夹中不需要识别的文件以排除干扰
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

姬忆慈Loveable

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值