refactored-umbrella项目指南

refactored-umbrella项目指南

refactored-umbrellaExample of Flow + LiveData w/ Room as single source of truth for data in an MVVM architecture项目地址:https://gitcode.com/gh_mirrors/re/refactored-umbrella


项目介绍

refactored-umberlla 是一个示例项目,展示了如何在MVVM架构中使用Flow + LiveData结合Room作为数据的单一来源,确保数据的一致性和响应性。该仓库由pavlospt维护,为开发者提供了一个实践现代Android开发模式的良好范例,特别强调了数据管理的最佳实践。

项目快速启动

准备环境

确保你的开发环境已经配置好以下组件:

  • Android Studio 最新版本。
  • Kotlin 支持。
  • Android SDK 已安装相应的目标API级别。
  • Gradle 插件兼容版本。

克隆项目

首先,从GitHub克隆这个项目到本地:

git clone https://github.com/pavlospt/refactored-umbrella.git

配置与运行

  1. 打开项目:在Android Studio中打开刚克隆的目录。
  2. 同步Gradle:首次打开项目,可能需要同步Gradle文件。
  3. 检查依赖:确认无缺失或冲突的依赖项。
  4. 运行应用:选择模拟器或连接的设备,点击运行按钮开始调试。
// 示例:确保你的build.gradle文件中有正确的依赖(这仅是一个示意,实际依赖已在项目中列出)
dependencies {
    implementation "androidx.lifecycle:lifecycle-livedata-ktx:$lifecycle_version"
    implementation "androidx.room:room-runtime:$room_version"
    kapt "androidx.room:room-compiler:$room_version"
}

应用案例和最佳实践

在这个项目中,主要亮点包括:

  • MVVM架构:清晰地分离视图(View)、视图模型(ViewModel)和模型(Model)的角色。
  • LiveData与Flow的结合:展示如何在ViewModel层使用LiveData来观察数据库变化,并利用Kotlin Flow处理异步数据流。
  • Room持久化库:作为数据存储层,演示高效的数据访问对象(DAO)定义和查询执行。

实践小贴士

  • 利用LiveData的可观察特性简化UI与数据的绑定。
  • 使用Kotlin的委托属性简化Room实体的访问。
  • 注意生命周期间的观察者管理,避免内存泄漏。

典型生态项目

虽然refactored-umbrella本身即是其生态中的一个典型实例,关注Android开发领域,还有许多其他项目和技术栈与之相辅相成:

  • Jetpack Compose集成:考虑将此项目迁移到Jetpack Compose,以体验声明式UI的编写方式。
  • Coroutines配合Flow:深入理解如何在不同层次间更高效地运用协同程序进行异步编程。
  • Architecture Components的深度整合:探索LiveDat与ViewModel之外,如Navigation Component,如何更好地构建导航逻辑。

通过研究并实践refactored-umbrella项目,开发者可以深化对Android现代架构的理解,并掌握一系列实用技巧和最佳实践,为构建高性能、易于维护的应用奠定坚实基础。

refactored-umbrellaExample of Flow + LiveData w/ Room as single source of truth for data in an MVVM architecture项目地址:https://gitcode.com/gh_mirrors/re/refactored-umbrella

# New module: utils.pyimport torchfrom torch import nnclass ConvBlock(nn.Module): """A convolutional block consisting of a convolution layer, batch normalization layer, and ReLU activation.""" def __init__(self, in_chans, out_chans, drop_prob): super().__init__() self.conv = nn.Conv2d(in_chans, out_chans, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_chans) self.relu = nn.ReLU(inplace=True) self.dropout = nn.Dropout2d(p=drop_prob) def forward(self, x): x = self.conv(x) x = self.bn(x) x = self.relu(x) x = self.dropout(x) return x# Refactored U-Net modelfrom torch import nnfrom utils import ConvBlockclass UnetModel(nn.Module): """PyTorch implementation of a U-Net model.""" def __init__(self, in_chans, out_chans, chans, num_pool_layers, drop_prob, pu_args=None): super().__init__() PUPS.__init__(self, *pu_args) self.in_chans = in_chans self.out_chans = out_chans self.chans = chans self.num_pool_layers = num_pool_layers self.drop_prob = drop_prob # Calculate input and output channels for each ConvBlock ch_list = [chans] + [chans * 2 ** i for i in range(num_pool_layers - 1)] in_chans_list = [in_chans] + [ch_list[i] for i in range(num_pool_layers - 1)] out_chans_list = ch_list[::-1] # Create down-sampling layers self.down_sample_layers = nn.ModuleList() for i in range(num_pool_layers): self.down_sample_layers.append(ConvBlock(in_chans_list[i], out_chans_list[i], drop_prob)) # Create up-sampling layers self.up_sample_layers = nn.ModuleList() for i in range(num_pool_layers - 1): self.up_sample_layers.append(ConvBlock(out_chans_list[i], out_chans_list[i + 1] // 2, drop_prob)) self.up_sample_layers.append(ConvBlock(out_chans_list[-1], out_chans_list[-1], drop_prob)) # Create final convolution layer self.conv2 = nn.Sequential( nn.Conv2d(out_chans_list[-1], out_chans_list[-1] // 2, kernel_size=1), nn.Conv2d(out_chans_list[-1] // 2, out_chans, kernel_size=1), nn.Conv2d(out_chans, out_chans, kernel_size=1), ) def forward(self, x): # Down-sampling path encoder_outs = [] for layer in self.down_sample_layers: x = layer(x) encoder_outs.append(x) x = nn.MaxPool2d(kernel_size=2)(x) # Bottom layer x = self.conv(x) # Up-sampling path for i, layer in enumerate(self.up_sample_layers): x = nn.functional.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True) x = torch.cat([x, encoder_outs[-(i + 1)]], dim=1) x = layer(x) # Final convolution layer x = self.conv2(x) return x
06-09
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

滕娴殉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值