Shikra:释放多模态大型语言模型的指引对话魅力

Shikra:释放多模态大型语言模型的指引对话魅力

shikra shikra 项目地址: https://gitcode.com/gh_mirrors/sh/shikra

项目介绍

Shikra 是一款精心设计的多模态大型语言模型(MLLM),它专注于启动空间坐标输入/输出的指引对话。Shikra 的独特之处在于,它不需要额外的词汇表、位置编码器、预/后检测或外部插件模型,就能在自然语言处理中表现出色。

项目技术分析

Shikra 的核心技术基于 LLaMA 模型,通过引入独特的空间坐标输入/输出机制,使得模型在处理空间关系的指引对话时具有更高的准确性和灵活性。该模型通过精细的调整和优化,能够在没有额外辅助工具的情况下,完成复杂的对话任务。

Shikra 的技术特点包括:

  • 空间坐标输入/输出:模型能够理解和生成包含空间坐标信息的对话内容,这对于指引对话尤其重要。
  • 无需额外工具:不依赖外部词汇表、位置编码器或插件模型,减少了模型的复杂性和依赖性。
  • 高效性能:通过优化模型结构和训练流程,Shikra 实现了高效的性能,能够在多种硬件平台上运行。

项目技术应用场景

Shikra 的技术应用场景非常广泛,特别是在需要空间坐标信息的对话系统中,如下:

  • 虚拟现实(VR)交互:在 VR 环境中,用户可以通过 Shikra 进行空间指引,如导航、对象指引等。
  • 智能助理:作为智能助理的一部分,Shikra 可以帮助用户进行空间任务的规划和执行。
  • 游戏辅助:在游戏中,Shikra 可以作为辅助工具,提供空间指引和任务协助。

项目特点

Shikra 项目具有以下显著特点:

  • 创新性:Shikra 引入了一种新的对话处理方式,特别是在空间坐标的处理上,具有创新性。
  • 简洁性:模型设计简洁,没有过多的依赖和复杂结构,便于部署和使用。
  • 实用性:Shikra 可以在实际应用中提供有效的对话支持,特别是在需要空间指引的场景中。

项目核心功能

Shikra:释放多模态大型语言模型的指引对话魅力

以下是对 Shikra 项目的详细解析:

安装

安装 Shikra 非常简单,只需要按照以下步骤操作:

conda create -n shikra python=3.10
conda activate shikra
pip install -r requirements.txt

模型 Checkpoint

Shikra 提供了两种 Checkpoint:shikra-7b-delta-v1 和经常更新的 shikra7b-delta-v1-0708。前者是用于评估和报告的 Checkpoint,后者则不断更新以添加新功能。

Demo

Shikra 提供了两种演示方式:Gradio Web Demo 和 Server-Client Demo。Gradio Web Demo 需要至少 16GB 显存的 GPU 才能运行,而 Server-Client Demo 则更加灵活。

训练和推理

Shikra 支持使用 accelerate 工具进行训练和推理。训练时,你需要准备数据集,并使用以下命令:

accelerate launch --num_processes 4 \
        --main_process_port 23786 \
        mllm/pipeline/finetune.py \
        config/shikra_pretrain_final19_stage2.py \
        --cfg-options model_args.model_name_or_path=/path/to/init/checkpoint

推理时,同样需要准备数据集,并使用以下命令:

accelerate launch --num_processes 4 \
        --main_process_port 23786 \
        mllm/pipeline/finetune.py \
        config/shikra_eval_multi_pope.py \
        --cfg-options model_args.model_name_or_path=/path/to/checkpoint

通过上述介绍,我们可以看到 Shikra 在多模态对话系统中的潜力和实用性。它的简洁性、创新性和实用性使其成为一个值得关注的开源项目。如果你对空间坐标的指引对话感兴趣,Shikra 无疑是一个不错的选择。

shikra shikra 项目地址: https://gitcode.com/gh_mirrors/sh/shikra

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

羿平肖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值