Medaka 开源项目教程
1. 项目介绍
Medaka 是一个用于创建共识序列和从纳米孔测序数据中进行变异调用的工具。它通过将神经网络应用于单个测序读取与参考序列的堆叠上来完成这一任务,通常参考序列可以是草稿组装或数据库参考序列。Medaka 提供了优于基于序列图和基于信号的方法的结果,同时速度更快。
主要特点
- 仅需要基础测序数据(fasta 或 fastq)。
- 比基于图的方法(如 Racon)具有更高的准确性。
- 比 Nanopolish 快 50 倍(并且可以在 GPU 上运行)。
- 包括用于实现和训练自定义校正网络的额外功能。
- 支持 Linux 和 MacOS。
- 开源(Oxford Nanopore Technologies PLC 公共许可证版本 1.0)。
2. 项目快速启动
安装 Medaka
Medaka 可以通过多种方式安装,以下是使用 pip 安装的示例:
# 创建虚拟环境
python3 -m venv medaka
source medaka/bin/activate
# 升级 pip 并安装 medaka
pip install --upgrade pip
pip install medaka
使用 Medaka 进行共识序列生成
以下是一个简单的示例,展示如何使用 Medaka 生成共识序列:
# 激活虚拟环境
source medaka/venv/bin/activate
# 设置变量
BASECALLS=basecalls.fa
DRAFT=draft_assm/assm_final.fa
OUTDIR=medaka_consensus
NPROC=$(nproc)
# 运行 medaka_consensus
medaka_consensus -i $BASECALLS -d $DRAFT -o $OUTDIR -t $NPROC
运行完成后,共识序列将保存在 $OUTDIR/consensus.fasta 文件中。
3. 应用案例和最佳实践
应用案例
Medaka 广泛应用于基因组组装和变异调用。例如,在基因组草稿组装后,可以使用 Medaka 生成高质量的共识序列,从而提高组装的质量。此外,Medaka 还可以用于从纳米孔测序数据中调用变异,特别是在需要高精度和快速处理的情况下。
最佳实践
- 选择合适的模型:Medaka 提供了多种模型,根据使用的测序仪和测序数据类型选择合适的模型非常重要。可以通过
medaka tools list_models命令查看可用的模型。 - 优化资源使用:如果使用 GPU,可以通过调整
-b选项来优化内存使用,避免内存不足的问题。 - 结合其他工具:Medaka 可以与其他基因组分析工具(如 Flye、Clair3 等)结合使用,以实现更全面的基因组分析。
4. 典型生态项目
Flye
Flye 是一个用于从头组装的工具,特别适用于长读长测序数据。Flye 生成的草稿组装可以作为 Medaka 的输入,进一步提高组装的质量。
Clair3
Clair3 是一个用于从纳米孔测序数据中进行变异调用的工具,特别是在需要高精度和快速处理的情况下。Clair3 可以与 Medaka 结合使用,提供更全面的变异调用解决方案。
EPI2ME Labs
EPI2ME Labs 提供了 Nextflow 实现,可以与 Medaka 结合使用,简化工作流程并提高分析效率。
通过结合这些工具,可以构建一个完整的基因组分析流程,从数据预处理到最终的变异调用和共识序列生成。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考



