推荐开源项目:RL-frenet-trajectory-planning-in-CARLA

推荐开源项目:RL-frenet-trajectory-planning-in-CARLA

项目地址:https://gitcode.com/gh_mirrors/rl/RL-frenet-trajectory-planning-in-CARLA

项目介绍

在自动驾驶技术迅猛发展的今天,如何在仿真环境中高效地进行轨迹规划和控制成为了一个重要的研究方向。今天,我们为大家推荐一个开源项目——RL-frenet-trajectory-planning-in-CARLA。这个项目旨在通过结合OpenAI Gym环境和CARLA自动驾驶仿真器,利用前沿的深度强化学习算法和Frenet轨迹规划技术,为自动驾驶汽车的轨迹规划提供一套完整的解决方案。

案例演示 案例演示

项目技术分析

核心技术

  1. OpenAI Gym环境:通过创建一个Gym环境,使得可以使用标准的强化学习框架进行训练和测试。
  2. CARLA仿真器:作为服务器端运行,提供高逼真的城市交通仿真环境。
  3. 深度强化学习算法:支持DDPG、TRPO、A2C、PPO2等多种算法,能够根据不同的需求进行选择和配置。
  4. Frenet轨迹规划:在Frenet坐标系中进行轨迹规划,提高规划的准确性和效率。

技术架构

  • 服务器-客户端模式:CARLA作为服务器,客户端通过指定端口与服务器进行交互。
  • Python环境配置:使用Python 3.7及以上版本,通过pip安装所需的依赖包。
  • 模型训练与保存:支持在训练过程中定期保存模型,并记录最佳模型。

项目及技术应用场景

  1. 自动驾驶技术研发:为自动驾驶汽车提供轨迹规划和控制的仿真环境,加速技术研发和验证。
  2. 学术研究:为学术界提供一套开源的轨迹规划框架,方便进行算法研究和比较。
  3. 教育培训:作为教学工具,帮助学生理解和掌握深度强化学习在自动驾驶中的应用。
  4. 工业应用:为汽车制造商和科技公司提供一套可扩展的仿真平台,用于产品开发和测试。

项目特点

  1. 高度可配置:通过配置文件config.yaml,可以灵活调整强化学习环境和算法的参数。
  2. 多种算法支持:内置DDPG、TRPO、A2C、PPO2等多种强化学习算法,满足不同需求。
  3. 模型管理与测试:支持模型的定期保存和最佳模型记录,方便进行模型管理和测试。
  4. 可视化与调试:提供多种可视化模式(2D、3D),并支持详细的调试信息输出。
  5. 高性能要求:为了获得更好的仿真效果,建议使用高性能GPU。

安装与使用

客户端安装

  1. 克隆项目仓库:
    git clone https://github.com/MajidMoghadam2006/RL-frenet-trajectory-planning-in-CARLA.git
    
  2. 进入项目目录:
    cd RL-frenet-trajectory-planning-in-CARLA/
    
  3. 安装依赖包:
    pip3 install -r requirements.txt
    
  4. 安装RL算法包:
    cd agents/reinforcement_learning
    pip install -e .
    

仿真服务器安装

  1. 下载预编译的CARLA仿真器: CARLA releases page
  2. 运行仿真器:
    ./CarlaUE4.sh
    
  3. 创建并激活Python虚拟环境:
    conda create -n carla99
    conda activate carla99
    
  4. 安装CARLA Python包:
    easy_install --user --no-deps carla-X.X.X-py3.7-linux-x86_64.egg
    

示例训练与测试

训练

  1. 终端1启动CARLA服务器:
    cd CARLA_0.9.9/
    ./CarlaUE4.sh -carla-server -fps=20 -world-port=2000 -windowed -ResX=1280 -ResY=720 -carla-no-hud -quality-level=Low
    
  2. 终端2运行训练脚本:
    cd RL-frenet-trajectory-planning-in-CARLA/
    python3 run.py --cfg_file=tools/cfgs/config.yaml --agent_id=1 --env=CarlaGymEnv-v1
    

测试

  1. 终端1启动CARLA服务器:
    cd CARLA_0.9.9/
    ./CarlaUE4.sh -carla-server -fps=20 -world-port=2000 -windowed -ResX=1280 -ResY=720 -carla-no-hud -quality-level=Low
    
  2. 终端2运行测试脚本:
    cd RL-frenet-trajectory-planning-in-CARLA/
    python3 run.py --agent_id=1 --env=CarlaGymEnv-v1 --test
    

总结

RL-frenet-trajectory-planning-in-CARLA项目为自动驾驶领域的研发人员提供了一个强大的仿真平台,结合深度强化学习和Frenet轨迹规划技术,能够高效地进行自动驾驶汽车的轨迹规划与控制。无论是学术研究还是工业应用,这个项目都值得您的关注和尝试。

立即访问项目GitHub页面,开启您的自动驾驶研发之旅吧!

RL-frenet-trajectory-planning-in-CARLA RL-frenet-trajectory-planning-in-CARLA 项目地址: https://gitcode.com/gh_mirrors/rl/RL-frenet-trajectory-planning-in-CARLA

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

惠悦颖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值