pythermalcomfort 项目教程
1. 项目介绍
pythermalcomfort
是一个用于计算多种热舒适指数(如 PMV、PPD、SET、自适应等)并转换物理变量的 Python 包。该项目由 Center for the Built Environment 开发,旨在为研究人员和工程师提供一个方便的工具来评估和优化建筑环境中的热舒适性。
2. 项目快速启动
安装
你可以通过 pip
快速安装 pythermalcomfort
:
pip install pythermalcomfort
如果你想要安装开发版本,可以使用以下命令:
pip install https://github.com/CenterForTheBuiltEnvironment/pythermalcomfort/archive/master.zip
使用示例
以下是一个简单的示例,展示如何使用 pythermalcomfort
计算 PMV(预测平均投票)和 PPD(预测不满意百分比):
from pythermalcomfort.models import pmv_ppd
# 输入参数
tdb = 22 # 干球温度 (°C)
tr = 22 # 辐射温度 (°C)
vel = 0.1 # 空气速度 (m/s)
rh = 50 # 相对湿度 (%)
met = 1.2 # 代谢率 (met)
clo = 0.5 # 服装热阻 (clo)
# 计算 PMV 和 PPD
results = pmv_ppd(tdb, tr, vel, rh, met, clo)
print("PMV:", results['pmv'])
print("PPD:", results['ppd'])
3. 应用案例和最佳实践
应用案例
- 建筑热舒适性评估:在建筑设计阶段,使用
pythermalcomfort
计算不同条件下的热舒适性指数,帮助设计师优化建筑布局和空调系统。 - 室内环境监测:在实际运行中,通过实时监测室内环境参数(如温度、湿度、风速等),使用
pythermalcomfort
计算当前的热舒适性,及时调整环境参数以提高居住者的舒适度。
最佳实践
- 参数校准:在使用
pythermalcomfort
计算热舒适性指数时,确保输入参数(如温度、湿度、风速等)的准确性,以获得可靠的结果。 - 多场景测试:在不同的环境条件下(如夏季、冬季、不同时间段等)进行测试,评估热舒适性的变化,为建筑设计提供全面的参考。
4. 典型生态项目
pythermalcomfort
可以与其他建筑环境相关的开源项目结合使用,例如:
- OpenStudio:一个用于建筑能源建模的开源工具,可以与
pythermalcomfort
结合使用,评估建筑的能源效率和热舒适性。 - EnergyPlus:一个用于建筑能源模拟的软件,可以通过
pythermalcomfort
的结果优化建筑的能源使用策略。
通过这些生态项目的结合,可以更全面地评估和优化建筑环境的热舒适性,提高建筑的整体性能。