BioBERT:生物医学文本挖掘的强大工具

BioBERT:生物医学文本挖掘的强大工具

biobert Bioinformatics'2020: BioBERT: a pre-trained biomedical language representation model for biomedical text mining biobert 项目地址: https://gitcode.com/gh_mirrors/bi/biobert

项目介绍

BioBERT 是由韩国国立首尔大学 DMIS-Lab 开发的生物医学语言表示模型,专为生物医学文本挖掘任务设计,如生物医学命名实体识别、关系提取、问答系统等。BioBERT 基于 Google 的 BERT 模型进行预训练,并在生物医学领域进行了进一步的微调,使其在处理生物医学文本时表现出色。

项目技术分析

BioBERT 的核心技术基于 Transformer 架构,通过大规模的生物医学文本数据进行预训练,从而学习到丰富的生物医学知识表示。BioBERT 提供了多个版本的预训练权重,包括基于 PubMed 和 PMC 数据集的不同版本,以满足不同应用场景的需求。

预训练权重版本

  • BioBERT-Base v1.2 (+ PubMed 1M):包含 LM 头,适用于探针任务。
  • BioBERT-Large v1.1 (+ PubMed 1M):基于 BERT-large-Cased,适用于高性能任务。
  • BioBERT-Base v1.1 (+ PubMed 1M):基于 BERT-base-Cased,适用于一般任务。
  • BioBERT-Base v1.0 (+ PubMed 200K):基于 BERT-base-Cased,适用于轻量级任务。
  • BioBERT-Base v1.0 (+ PMC 270K):基于 BERT-base-Cased,适用于 PMC 数据集。
  • BioBERT-Base v1.0 (+ PubMed 200K + PMC 270K):基于 BERT-base-Cased,适用于综合任务。

安装与使用

BioBERT 支持 TensorFlow 和 PyTorch 两种框架,用户可以根据自己的需求选择合适的版本进行安装和使用。对于不熟悉编程的用户,还可以使用基于 BioBERT 的在线工具 BERN 进行生物医学实体识别和规范化。

项目及技术应用场景

BioBERT 在多个生物医学文本挖掘任务中表现优异,适用于以下应用场景:

  • 生物医学命名实体识别 (NER):从生物医学文献中提取疾病、基因、蛋白质等实体。
  • 关系提取 (RE):识别生物医学实体之间的关系,如药物与疾病的关系。
  • 问答系统 (QA):构建生物医学领域的问答系统,快速回答专业问题。

项目特点

  • 领域专业化:BioBERT 在生物医学领域进行了专门的预训练,能够更好地理解和处理生物医学文本。
  • 多版本支持:提供多个版本的预训练权重,满足不同任务和性能需求。
  • 易于使用:支持 TensorFlow 和 PyTorch 两种主流框架,并提供在线工具简化使用流程。
  • 高性能:在多个生物医学文本挖掘任务中表现出色,优于通用语言模型。

结语

BioBERT 作为一款专为生物医学领域设计的语言模型,凭借其强大的性能和灵活的应用方式,已经成为生物医学文本挖掘领域的重要工具。无论你是研究人员、开发者还是生物医学领域的从业者,BioBERT 都能为你提供强大的支持,帮助你更好地处理和分析生物医学文本数据。

biobert Bioinformatics'2020: BioBERT: a pre-trained biomedical language representation model for biomedical text mining biobert 项目地址: https://gitcode.com/gh_mirrors/bi/biobert

BioBERT:用于生物医学文本挖掘的预训练生物医学语言表示模型。随着生物医学文献数量的快速增长,生物医学文本挖掘变得越来越重要。随着自然语言处理(NLP)的进步,从生物医学文献中提取有价值的信息已在研究人员中受到欢迎,深度学习促进了有效的生物医学文本挖掘模型的发展。但是,由于单词分布从普通领域的语料库转移到生物医学的语料库,直接将NLP的进步应用到生物医学文本挖掘中常常会产生不令人满意的结果。在本文中,我们研究了最近引入的预训练语言模型BERT如何适用于生物医学语料库。我们介绍了BioBERT(用于生物医学文本挖掘的变压器的双向编码器表示),这是在大型生物医学语料库上预先训练的领域特定语言表示模型。通过在任务上几乎相同的体系结构,在经过生物医学语料库的预训练之后,BioBERT在许多生物医学文本挖掘任务中都大大优于BERT和以前的最新模型。尽管BERT获得的性能可与以前的最新模型相媲美,但在以下三个代表性生物医学文本挖掘任务上,BioBERT的性能明显优于它们:生物医学命名实体识别(F1分数提高0.62%),生物医学关系提取(2.80%) F1分数提高)和生物医学问答(MRR提高12.24%)。我们的分析结果表明,对生物医学语料库进行BERT的预培训有助于其理解复杂的生物医学文献。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宋虎辉Mandy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值