知识库完成工具包(kbc)安装与使用指南
项目概述
本指南将引导您深入了解由Facebook Research维护的kbc仓库。此项目致力于实现知识库完成的最先进方法,特别是基于论文《Canonical Tensor Decomposition for Knowledge Base Completion》(ICML 2018)中的技术。项目提供了一套工具,以复现研究结果并进行进一步的知识图谱补全实验。
目录结构及介绍
kbc仓库遵循清晰的组织结构,确保开发者能够迅速定位关键组件:
-
./
根目录code_of_conduct.md
: 开发者的行为准则。contributing.md
: 对贡献者的指导原则。LICENSE
: 许可证信息,表明项目遵循CC-BY-NC协议。README.md
: 项目简介,包含快速入门和基本使用说明。requirements.txt
: 项目运行所需的Python包列表。setup.py
: 安装脚本,用于将项目作为Python包安装到环境中。
-
kbc/
主要源代码目录:scripts/
: 包含数据下载和预处理脚本。process_datasets.py
: 处理并准备数据集的脚本。learn.py
: 核心执行文件,用于训练模型完成知识图谱的补全。
-
其它配置和数据相关文件按需分布在不同的子目录中,但依据提供的资料,这些细节未明确列出。
启动文件介绍
learn.py
这是项目的核心启动脚本,负责模型的训练过程。通过这个脚本,您可以指定知识图谱数据集、选择模型类型(如ComplEx)、配置模型参数(例如秩、优化器、学习率等),并开始训练流程。命令行参数提供了灵活性,使用户能够轻松调整实验设置,例如:
python kbc/learn.py --dataset FB15K --model ComplEx --rank 500 ...
配置文件介绍
尽管该项目没有单独列出传统意义上的配置文件(如.yml或.ini文件),但其配置主要通过命令行参数实现。用户在运行learn.py
时,通过指定各种标志(比如--dataset、--model、超参数等)来配置实验。此外,requirements.txt
文件可以视为间接的环境配置文件,定义了项目依赖项。
为了更复杂的配置需求,开发者可能需要手动编辑脚本或在调用learn.py
时加入更多自定义参数。例如,如果您希望改变数据处理方式,可能需要直接修改process_datasets.py
内的逻辑。
快速安装步骤
-
创建Conda环境:
conda create --name kbc_env python=3.7 source activate kbc_env
-
安装依赖:
conda install --file requirements.txt -c pytorch
-
项目安装:
python setup.py install
-
数据准备: 进入
kbc/scripts
目录,给予下载脚本执行权限并运行:chmod +x download_data.sh ./download_data.sh
-
数据处理: 回到项目主目录,处理数据集以便于训练:
python kbc/process_datasets.py
-
开始训练: 选择一个实验配置,比如:
python kbc/learn.py --dataset FB15K --model ComplEx --rank 500 ...
通过以上步骤,您就可以开始您的知识库完成之旅了。记得调整参数以适应您的具体需求和实验目的。