知识库完成工具包(kbc)安装与使用指南

知识库完成工具包(kbc)安装与使用指南

kbc Tools for state of the art Knowledge Base Completion. kbc 项目地址: https://gitcode.com/gh_mirrors/kb/kbc

项目概述

本指南将引导您深入了解由Facebook Research维护的kbc仓库。此项目致力于实现知识库完成的最先进方法,特别是基于论文《Canonical Tensor Decomposition for Knowledge Base Completion》(ICML 2018)中的技术。项目提供了一套工具,以复现研究结果并进行进一步的知识图谱补全实验。

目录结构及介绍

kbc仓库遵循清晰的组织结构,确保开发者能够迅速定位关键组件:

  • ./根目录

    • code_of_conduct.md: 开发者的行为准则。
    • contributing.md: 对贡献者的指导原则。
    • LICENSE: 许可证信息,表明项目遵循CC-BY-NC协议。
    • README.md: 项目简介,包含快速入门和基本使用说明。
    • requirements.txt: 项目运行所需的Python包列表。
    • setup.py: 安装脚本,用于将项目作为Python包安装到环境中。
  • kbc/ 主要源代码目录:

    • scripts/: 包含数据下载和预处理脚本。
    • process_datasets.py: 处理并准备数据集的脚本。
    • learn.py: 核心执行文件,用于训练模型完成知识图谱的补全。
  • 其它配置和数据相关文件按需分布在不同的子目录中,但依据提供的资料,这些细节未明确列出。

启动文件介绍

learn.py

这是项目的核心启动脚本,负责模型的训练过程。通过这个脚本,您可以指定知识图谱数据集、选择模型类型(如ComplEx)、配置模型参数(例如秩、优化器、学习率等),并开始训练流程。命令行参数提供了灵活性,使用户能够轻松调整实验设置,例如:

python kbc/learn.py --dataset FB15K --model ComplEx --rank 500 ...

配置文件介绍

尽管该项目没有单独列出传统意义上的配置文件(如.yml或.ini文件),但其配置主要通过命令行参数实现。用户在运行learn.py时,通过指定各种标志(比如--dataset、--model、超参数等)来配置实验。此外,requirements.txt文件可以视为间接的环境配置文件,定义了项目依赖项。

为了更复杂的配置需求,开发者可能需要手动编辑脚本或在调用learn.py时加入更多自定义参数。例如,如果您希望改变数据处理方式,可能需要直接修改process_datasets.py内的逻辑。

快速安装步骤

  1. 创建Conda环境:

    conda create --name kbc_env python=3.7
    source activate kbc_env
    
  2. 安装依赖:

    conda install --file requirements.txt -c pytorch
    
  3. 项目安装:

    python setup.py install
    
  4. 数据准备: 进入kbc/scripts目录,给予下载脚本执行权限并运行:

    chmod +x download_data.sh
    ./download_data.sh
    
  5. 数据处理: 回到项目主目录,处理数据集以便于训练:

    python kbc/process_datasets.py
    
  6. 开始训练: 选择一个实验配置,比如:

    python kbc/learn.py --dataset FB15K --model ComplEx --rank 500 ...
    

通过以上步骤,您就可以开始您的知识库完成之旅了。记得调整参数以适应您的具体需求和实验目的。

kbc Tools for state of the art Knowledge Base Completion. kbc 项目地址: https://gitcode.com/gh_mirrors/kb/kbc

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

卓华茵Doyle

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值