EquiformerV2:更高阶表示的改进等变Transformer安装与使用指南
项目概述
EquiformerV2 是一个在 International Conference on Learning Representations (ICLR) 2024 上发表的研究成果,它是一个经过改进的等变Transformer,旨在扩展到更高阶的表示。此项目提供了针对3D原子系统应用的高效模型实现,特别是在处理大规模分子数据时展示出优势。代码库位于 GitHub,支持训练基线模型,并且已整合入Open Catalyst项目中。
目录结构及介绍
下面是 equiformer_v2
项目的基本目录结构及其简要说明:
.
├── README.md # 项目简介和快速入门指南
├── LICENSE # 许可协议文件
├── env # 环境配置相关文件或说明
├── nets # 模型网络定义文件夹,包括EquiformerV2的核心架构
├── scripts # 脚本文件夹,通常包含训练和评估脚本
│ └── train/oc20 # 针对OC20数据集的训练脚本和配置
│ └── s2ef # 特定任务(如S2EF)的子目录
│ └── equiformer_v2 # 具体训练脚本
├── datasets # 数据预处理或加载相关的代码
├── utils # 辅助工具函数集合
├── engine.py # 主要的运行引擎,包含了训练和评估的主要逻辑
├── optim_factory.py # 优化器工厂,用于创建不同类型的优化器
├── main_oc20.py # 对OC20数据集进行主要操作的入口文件
└── ...
项目的启动文件介绍
main_oc20.py
这是项目的主要执行脚本,特别是针对OC20数据集的训练和评估。用户通过修改其参数或者配置文件来控制训练流程,比如选择模型配置、数据集路径、训练轮次等。启动项目通常从调用这个脚本开始,例如:
python main_oc20.py --config_path=path/to/config.yaml
其中 path/to/config.yaml
应替换为具体的配置文件路径。
项目的配置文件介绍
配置文件,例如 config.yaml
,是控制实验设置的关键。这类文件一般包含以下几个核心部分:
- 模型配置:指定使用的模型版本(如EquiformerV2的不同配置),以及可能的超参数。
- 数据集路径:指明训练和验证数据集的位置。
- 训练设置:包括批次大小(batch size)、学习率(lr)、训练轮数(epochs)等。
- 优化器设置:选择哪种优化器及对应的参数。
- 日志和保存路径:记录训练日志及模型检查点保存的位置。
示例配置文件简化版可能看起来像这样:
model:
name: EquiformerV2
config: 'config_16_3_232'
dataset:
path: '/path/to/your/dataset'
training:
batch_size: 32
epochs: 100
lr: 0.001
logging:
log_dir: './logs'
save_model_path: './checkpoints'
确保在实际使用中详细阅读每个配置项的说明,并按需调整以适应您的实验需求。
请注意,具体配置项和其命名可能会根据实际项目有所变化,请参照最新版本的文档和示例配置文件。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考