EquiformerV2:更高阶表示的改进等变Transformer安装与使用指南

EquiformerV2:更高阶表示的改进等变Transformer安装与使用指南

equiformer_v2[ICLR'24] EquiformerV2: Improved Equivariant Transformer for Scaling to Higher-Degree Representations项目地址:https://gitcode.com/gh_mirrors/eq/equiformer_v2

项目概述

EquiformerV2 是一个在 International Conference on Learning Representations (ICLR) 2024 上发表的研究成果,它是一个经过改进的等变Transformer,旨在扩展到更高阶的表示。此项目提供了针对3D原子系统应用的高效模型实现,特别是在处理大规模分子数据时展示出优势。代码库位于 GitHub,支持训练基线模型,并且已整合入Open Catalyst项目中。

目录结构及介绍

下面是 equiformer_v2 项目的基本目录结构及其简要说明:

.
├── README.md          # 项目简介和快速入门指南
├── LICENSE             # 许可协议文件
├── env                 # 环境配置相关文件或说明
├── nets                # 模型网络定义文件夹,包括EquiformerV2的核心架构
├── scripts             # 脚本文件夹,通常包含训练和评估脚本
│   └── train/oc20      # 针对OC20数据集的训练脚本和配置
│       └── s2ef        # 特定任务(如S2EF)的子目录
│           └── equiformer_v2    # 具体训练脚本
├── datasets            # 数据预处理或加载相关的代码
├── utils               # 辅助工具函数集合
├── engine.py           # 主要的运行引擎,包含了训练和评估的主要逻辑
├── optim_factory.py    # 优化器工厂,用于创建不同类型的优化器
├── main_oc20.py        # 对OC20数据集进行主要操作的入口文件
└── ...

项目的启动文件介绍

main_oc20.py

这是项目的主要执行脚本,特别是针对OC20数据集的训练和评估。用户通过修改其参数或者配置文件来控制训练流程,比如选择模型配置、数据集路径、训练轮次等。启动项目通常从调用这个脚本开始,例如:

python main_oc20.py --config_path=path/to/config.yaml

其中 path/to/config.yaml 应替换为具体的配置文件路径。

项目的配置文件介绍

配置文件,例如 config.yaml,是控制实验设置的关键。这类文件一般包含以下几个核心部分:

  • 模型配置:指定使用的模型版本(如EquiformerV2的不同配置),以及可能的超参数。
  • 数据集路径:指明训练和验证数据集的位置。
  • 训练设置:包括批次大小(batch size)、学习率(lr)、训练轮数(epochs)等。
  • 优化器设置:选择哪种优化器及对应的参数。
  • 日志和保存路径:记录训练日志及模型检查点保存的位置。

示例配置文件简化版可能看起来像这样:

model:
  name: EquiformerV2
  config: 'config_16_3_232'

dataset:
  path: '/path/to/your/dataset'
  
training:
  batch_size: 32
  epochs: 100
  lr: 0.001
  
logging:
  log_dir: './logs'
  save_model_path: './checkpoints'

确保在实际使用中详细阅读每个配置项的说明,并按需调整以适应您的实验需求。

请注意,具体配置项和其命名可能会根据实际项目有所变化,请参照最新版本的文档和示例配置文件。

equiformer_v2[ICLR'24] EquiformerV2: Improved Equivariant Transformer for Scaling to Higher-Degree Representations项目地址:https://gitcode.com/gh_mirrors/eq/equiformer_v2

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

祝舟连

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值