GRUtopia 使用教程
1. 项目介绍
GRUtopia(桃源)是一个用于Embodied AI研究的一般目的平台。它包含了大规模的场景数据集GRScenes,覆盖了89种不同的场景类型,有助于在不同环境下部署通用机器人。此外,GRUtopia还引入了由大型语言模型驱动的非玩家角色(NPC)系统GRResidents,能够进行社交互动、任务生成和任务分配,从而模拟适用于Embodied AI应用的社会场景。该项目还包括了一系列用于评估机器人不同能力的Embodied AI基准测试GRBench。
2. 项目快速启动
在开始之前,请确保您已经安装了以下依赖项:
- Ubuntu 20.04 或 22.04 操作系统
- NVIDIA GPU(RTX 2070 或更高版本)
- NVIDIA GPU 驱动程序(推荐版本 535.216.01+)
- Docker(可选)
- NVIDIA 容器工具包(可选)
- Conda
- Python 3.10.16(3.10.* 版本均可)
以下是将GRUtopia安装在本地环境的步骤:
# 克隆项目仓库
git clone https://github.com/OpenRobotLab/GRUtopia.git
# 进入项目目录
cd GRUtopia
# 安装项目依赖
pip install -r requirements.txt
# 安装完成后,您可以开始使用GRUtopia提供的各种模块和工具
3. 应用案例和最佳实践
以下是使用GRUtopia的一些应用案例和最佳实践:
- 对象定位导航:训练机器人执行在环境中寻找和导航到特定对象的任务。
- 社交定位导航:模拟机器人与环境中其他角色进行交互的场景,如避让行人或与其他机器人协作。
- 定位操作:训练机器人执行简单的操作任务,如抓取或移动对象。
4. 典型生态项目
GRUtopia的生态系统中,以下是一些典型的相关项目:
- GRScenes-100:一个包含100k个交互式精细注释场景的数据集,用于支持GRUtopia的场景生成和机器人训练。
- GRResidents:一个基于大型语言模型的NPC系统,用于模拟社交场景和任务。
- GRBench:一系列Embodied AI基准测试,用于评估机器人在不同任务上的表现。
通过这些项目和工具,研究人员可以更好地开发和评估Embodied AI系统,推动该领域的发展。