GRUtopia 使用教程

GRUtopia 使用教程

GRUtopia GRUtopia: Dream General Robots in a City at Scale GRUtopia 项目地址: https://gitcode.com/gh_mirrors/gr/GRUtopia

1. 项目介绍

GRUtopia(桃源)是一个用于Embodied AI研究的一般目的平台。它包含了大规模的场景数据集GRScenes,覆盖了89种不同的场景类型,有助于在不同环境下部署通用机器人。此外,GRUtopia还引入了由大型语言模型驱动的非玩家角色(NPC)系统GRResidents,能够进行社交互动、任务生成和任务分配,从而模拟适用于Embodied AI应用的社会场景。该项目还包括了一系列用于评估机器人不同能力的Embodied AI基准测试GRBench。

2. 项目快速启动

在开始之前,请确保您已经安装了以下依赖项:

  • Ubuntu 20.04 或 22.04 操作系统
  • NVIDIA GPU(RTX 2070 或更高版本)
  • NVIDIA GPU 驱动程序(推荐版本 535.216.01+)
  • Docker(可选)
  • NVIDIA 容器工具包(可选)
  • Conda
  • Python 3.10.16(3.10.* 版本均可)

以下是将GRUtopia安装在本地环境的步骤:

# 克隆项目仓库
git clone https://github.com/OpenRobotLab/GRUtopia.git

# 进入项目目录
cd GRUtopia

# 安装项目依赖
pip install -r requirements.txt

# 安装完成后,您可以开始使用GRUtopia提供的各种模块和工具

3. 应用案例和最佳实践

以下是使用GRUtopia的一些应用案例和最佳实践:

  • 对象定位导航:训练机器人执行在环境中寻找和导航到特定对象的任务。
  • 社交定位导航:模拟机器人与环境中其他角色进行交互的场景,如避让行人或与其他机器人协作。
  • 定位操作:训练机器人执行简单的操作任务,如抓取或移动对象。

4. 典型生态项目

GRUtopia的生态系统中,以下是一些典型的相关项目:

  • GRScenes-100:一个包含100k个交互式精细注释场景的数据集,用于支持GRUtopia的场景生成和机器人训练。
  • GRResidents:一个基于大型语言模型的NPC系统,用于模拟社交场景和任务。
  • GRBench:一系列Embodied AI基准测试,用于评估机器人在不同任务上的表现。

通过这些项目和工具,研究人员可以更好地开发和评估Embodied AI系统,推动该领域的发展。

GRUtopia GRUtopia: Dream General Robots in a City at Scale GRUtopia 项目地址: https://gitcode.com/gh_mirrors/gr/GRUtopia

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

祝舟连

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值