使用预训练的源代码大型语言模型指南
1. 项目介绍
Code LMs 是一个由VHellendoorn开发的开源项目,旨在指导如何使用预训练的大型神经语言模型处理程序源代码。该项目提供了对PolyCoder等模型的访问,这些模型能够理解并生成多种编程语言的代码,从而辅助开发者进行自动化编程任务。
2. 项目快速启动
要开始使用Code LMs,首先确保已安装必要的依赖项,例如Python和Huggingface Transformers库。接下来,克隆项目仓库:
git clone https://github.com/VHellendoorn/Code-LMs.git
cd Code-LMs
然后,你可以使用以下命令下载测试集(包括12种编程语言):
wget https://zenodo.org/record/6363556/files/unseen_test_sets.tar.gz
tar -xvzf unseen_test_sets.tar.gz
为了评估模型,如Codex,确保你有一个OpenAI API key,并运行:
export OPENAI_API_KEY=<YOUR_OPEN_AI_API_KEY>
python3 Evaluation/eval_codex_all.py --dirs Code-sampled100
记得将<YOUR_OPEN_AI_API_KEY>
替换为你的实际API密钥。
3. 应用案例和最佳实践
代码补全
使用预训练的模型,可以实现智能代码补全功能。在输入部分代码后,模型可以根据上下文提供可能的代码片段建议。
from transformers import AutoTokenizer, AutoModelForCodeGeneration
tokenizer = AutoTokenizer.from_pretrained("NinedayWang/PolyCoder-160M")
model = AutoModelForCodeGeneration.from_pretrained("NinedayWang/PolyCoder-160M")
input_code = "def function_name(param1, param2):\n "
encoded_input = tokenizer(input_code, return_tensors="pt", padding=True)
generated_code = model.generate(encoded_input)
decoded_output = tokenizer.decode(generated_code[0], skip_special_tokens=True)
print(decoded_output)
错误修复
对于含有错误的代码,模型可以尝试识别并修正错误,帮助开发者快速定位和解决问题。
def broken_function(a, b):
result = a + b
if result > 10:
print('Result:', resu)
通过模型分析,可以推荐修复方案,例如更正变量名resu
到result
。
4. 典型生态项目
- Huggingface Transformers: 提供了接口来集成各种预训练模型,包括Code LMs中提到的PolyCoder。
- OpenAI API: 提供了访问Codex等模型的API,可用于代码生成和评估。
以上是Code LMs的基本操作和应用场景。随着更多的研究和社区贡献,这个工具包的应用潜力将持续扩大。为了获取最新更新和参与讨论,访问项目GitHub页面或加入相关论坛。