使用预训练的源代码大型语言模型指南

使用预训练的源代码大型语言模型指南

Code-LMsGuide to using pre-trained large language models of source code项目地址:https://gitcode.com/gh_mirrors/co/Code-LMs

1. 项目介绍

Code LMs 是一个由VHellendoorn开发的开源项目,旨在指导如何使用预训练的大型神经语言模型处理程序源代码。该项目提供了对PolyCoder等模型的访问,这些模型能够理解并生成多种编程语言的代码,从而辅助开发者进行自动化编程任务。

2. 项目快速启动

要开始使用Code LMs,首先确保已安装必要的依赖项,例如Python和Huggingface Transformers库。接下来,克隆项目仓库:

git clone https://github.com/VHellendoorn/Code-LMs.git
cd Code-LMs

然后,你可以使用以下命令下载测试集(包括12种编程语言):

wget https://zenodo.org/record/6363556/files/unseen_test_sets.tar.gz
tar -xvzf unseen_test_sets.tar.gz

为了评估模型,如Codex,确保你有一个OpenAI API key,并运行:

export OPENAI_API_KEY=<YOUR_OPEN_AI_API_KEY>
python3 Evaluation/eval_codex_all.py --dirs Code-sampled100

记得将<YOUR_OPEN_AI_API_KEY>替换为你的实际API密钥。

3. 应用案例和最佳实践

代码补全

使用预训练的模型,可以实现智能代码补全功能。在输入部分代码后,模型可以根据上下文提供可能的代码片段建议。

from transformers import AutoTokenizer, AutoModelForCodeGeneration

tokenizer = AutoTokenizer.from_pretrained("NinedayWang/PolyCoder-160M")
model = AutoModelForCodeGeneration.from_pretrained("NinedayWang/PolyCoder-160M")

input_code = "def function_name(param1, param2):\n    "
encoded_input = tokenizer(input_code, return_tensors="pt", padding=True)

generated_code = model.generate(encoded_input)
decoded_output = tokenizer.decode(generated_code[0], skip_special_tokens=True)
print(decoded_output)

错误修复

对于含有错误的代码,模型可以尝试识别并修正错误,帮助开发者快速定位和解决问题。

def broken_function(a, b):
    result = a + b
    if result > 10:
        print('Result:', resu)

通过模型分析,可以推荐修复方案,例如更正变量名resuresult

4. 典型生态项目

  • Huggingface Transformers: 提供了接口来集成各种预训练模型,包括Code LMs中提到的PolyCoder。
  • OpenAI API: 提供了访问Codex等模型的API,可用于代码生成和评估。

以上是Code LMs的基本操作和应用场景。随着更多的研究和社区贡献,这个工具包的应用潜力将持续扩大。为了获取最新更新和参与讨论,访问项目GitHub页面或加入相关论坛。

Code-LMsGuide to using pre-trained large language models of source code项目地址:https://gitcode.com/gh_mirrors/co/Code-LMs

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

甄墨疆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值