BoostARoota 项目使用教程

BoostARoota 项目使用教程

BoostARootaA fast xgboost feature selection algorithm项目地址:https://gitcode.com/gh_mirrors/bo/BoostARoota

1. 项目的目录结构及介绍

BoostARoota 项目的目录结构如下:

BoostARoota/
├── LICENSE
├── README.md
├── setup.py
├── boostaroota/
│   ├── __init__.py
│   ├── boostaroota.py
│   └── tests/
│       ├── __init__.py
│       └── test_boostaroota.py
└── examples/
    └── example.py

目录结构介绍

  • LICENSE: 项目的许可证文件。
  • README.md: 项目说明文档。
  • setup.py: 项目安装脚本。
  • boostaroota/: 项目核心代码目录。
    • init.py: 初始化文件,使目录成为一个 Python 包。
    • boostaroota.py: 主要功能实现文件。
    • tests/: 测试代码目录。
      • init.py: 初始化文件,使目录成为一个 Python 包。
      • test_boostaroota.py: 测试用例文件。
  • examples/: 示例代码目录。
    • example.py: 使用示例文件。

2. 项目的启动文件介绍

项目的启动文件是 examples/example.py。该文件提供了一个使用 BoostARoota 的基本示例。

示例代码

from boostaroota import BoostARoota
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from xgboost import XGBClassifier

# 加载数据集
data = load_breast_cancer()
X = data.data
y = data.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 初始化 BoostARoota
br = BoostARoota(XGBClassifier())

# 拟合数据
br.fit(X_train, y_train)

# 转换数据
X_train_transformed = br.transform(X_train)
X_test_transformed = br.transform(X_test)

print("原始特征数量:", X_train.shape[1])
print("筛选后的特征数量:", X_train_transformed.shape[1])

3. 项目的配置文件介绍

BoostARoota 项目没有专门的配置文件,其参数通过代码中的类初始化进行设置。以下是一些常用的参数:

常用参数

  • clf: 基础分类器,默认为 XGBClassifier()
  • max_rounds: 最大迭代轮数,默认为 100。
  • delta: 停止标准,默认为 0.1。
  • silent: 是否静默运行,默认为 False

示例代码

from boostaroota import BoostARoota
from xgboost import XGBClassifier

# 初始化 BoostARoota 并设置参数
br = BoostARoota(XGBClassifier(), max_rounds=50, delta=0.2, silent=True)

通过以上参数设置,可以灵活调整 BoostARoota 的行为。

BoostARootaA fast xgboost feature selection algorithm项目地址:https://gitcode.com/gh_mirrors/bo/BoostARoota

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

毕博峰

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值