BoostARoota 项目使用教程
1. 项目的目录结构及介绍
BoostARoota 项目的目录结构如下:
BoostARoota/
├── LICENSE
├── README.md
├── setup.py
├── boostaroota/
│ ├── __init__.py
│ ├── boostaroota.py
│ └── tests/
│ ├── __init__.py
│ └── test_boostaroota.py
└── examples/
└── example.py
目录结构介绍
- LICENSE: 项目的许可证文件。
- README.md: 项目说明文档。
- setup.py: 项目安装脚本。
- boostaroota/: 项目核心代码目录。
- init.py: 初始化文件,使目录成为一个 Python 包。
- boostaroota.py: 主要功能实现文件。
- tests/: 测试代码目录。
- init.py: 初始化文件,使目录成为一个 Python 包。
- test_boostaroota.py: 测试用例文件。
- examples/: 示例代码目录。
- example.py: 使用示例文件。
2. 项目的启动文件介绍
项目的启动文件是 examples/example.py
。该文件提供了一个使用 BoostARoota 的基本示例。
示例代码
from boostaroota import BoostARoota
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from xgboost import XGBClassifier
# 加载数据集
data = load_breast_cancer()
X = data.data
y = data.target
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 初始化 BoostARoota
br = BoostARoota(XGBClassifier())
# 拟合数据
br.fit(X_train, y_train)
# 转换数据
X_train_transformed = br.transform(X_train)
X_test_transformed = br.transform(X_test)
print("原始特征数量:", X_train.shape[1])
print("筛选后的特征数量:", X_train_transformed.shape[1])
3. 项目的配置文件介绍
BoostARoota 项目没有专门的配置文件,其参数通过代码中的类初始化进行设置。以下是一些常用的参数:
常用参数
- clf: 基础分类器,默认为
XGBClassifier()
。 - max_rounds: 最大迭代轮数,默认为 100。
- delta: 停止标准,默认为 0.1。
- silent: 是否静默运行,默认为
False
。
示例代码
from boostaroota import BoostARoota
from xgboost import XGBClassifier
# 初始化 BoostARoota 并设置参数
br = BoostARoota(XGBClassifier(), max_rounds=50, delta=0.2, silent=True)
通过以上参数设置,可以灵活调整 BoostARoota 的行为。