pytorch.sngan_projection 开源项目教程

pytorch.sngan_projection 开源项目教程

pytorch.sngan_projectionAn unofficial PyTorch implementation of SNGAN (ICLR 2018) and cGANs with projection discriminator (ICLR 2018).项目地址:https://gitcode.com/gh_mirrors/py/pytorch.sngan_projection

1. 项目的目录结构及介绍

pytorch.sngan_projection/
├── data/
│   └── prepare_dataset.py
├── models/
│   ├── discriminator.py
│   ├── generator.py
│   └── loss.py
├── scripts/
│   ├── train.py
│   └── evaluate.py
├── configs/
│   └── default_config.yaml
├── README.md
└── requirements.txt
  • data/: 包含数据集准备脚本。
  • models/: 包含生成器和判别器的模型定义以及损失函数。
  • scripts/: 包含训练和评估脚本。
  • configs/: 包含配置文件。
  • README.md: 项目说明文档。
  • requirements.txt: 项目依赖包列表。

2. 项目的启动文件介绍

项目的启动文件主要位于 scripts/ 目录下:

  • train.py: 用于启动训练过程的脚本。
  • evaluate.py: 用于评估模型性能的脚本。

train.py

import argparse
from models import Generator, Discriminator
from data import prepare_dataset
from configs import load_config

def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--config', type=str, default='configs/default_config.yaml')
    args = parser.parse_args()

    config = load_config(args.config)
    dataset = prepare_dataset(config)
    generator = Generator(config)
    discriminator = Discriminator(config)

    # 训练逻辑
    # ...

if __name__ == '__main__':
    main()

evaluate.py

import argparse
from models import Generator
from data import prepare_dataset
from configs import load_config

def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--config', type=str, default='configs/default_config.yaml')
    args = parser.parse_args()

    config = load_config(args.config)
    dataset = prepare_dataset(config)
    generator = Generator(config)

    # 评估逻辑
    # ...

if __name__ == '__main__':
    main()

3. 项目的配置文件介绍

配置文件位于 configs/ 目录下,默认配置文件为 default_config.yaml

default_config.yaml

data:
  path: 'path/to/dataset'
  batch_size: 64

model:
  latent_dim: 100
  feature_maps: 64

training:
  epochs: 200
  lr: 0.0002
  beta1: 0.5
  beta2: 0.999
  • data: 数据集路径和批次大小。
  • model: 模型参数,包括潜在维度(latent dimension)和特征图(feature maps)。
  • training: 训练参数,包括训练轮数(epochs)、学习率(lr)和优化器参数(beta1, beta2)。

通过修改配置文件,可以调整数据集路径、模型参数和训练参数,以适应不同的训练需求。

pytorch.sngan_projectionAn unofficial PyTorch implementation of SNGAN (ICLR 2018) and cGANs with projection discriminator (ICLR 2018).项目地址:https://gitcode.com/gh_mirrors/py/pytorch.sngan_projection

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

邴坤鸿Jewel

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值