pytorch.sngan_projection 开源项目教程
1. 项目的目录结构及介绍
pytorch.sngan_projection/
├── data/
│ └── prepare_dataset.py
├── models/
│ ├── discriminator.py
│ ├── generator.py
│ └── loss.py
├── scripts/
│ ├── train.py
│ └── evaluate.py
├── configs/
│ └── default_config.yaml
├── README.md
└── requirements.txt
data/
: 包含数据集准备脚本。models/
: 包含生成器和判别器的模型定义以及损失函数。scripts/
: 包含训练和评估脚本。configs/
: 包含配置文件。README.md
: 项目说明文档。requirements.txt
: 项目依赖包列表。
2. 项目的启动文件介绍
项目的启动文件主要位于 scripts/
目录下:
train.py
: 用于启动训练过程的脚本。evaluate.py
: 用于评估模型性能的脚本。
train.py
import argparse
from models import Generator, Discriminator
from data import prepare_dataset
from configs import load_config
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, default='configs/default_config.yaml')
args = parser.parse_args()
config = load_config(args.config)
dataset = prepare_dataset(config)
generator = Generator(config)
discriminator = Discriminator(config)
# 训练逻辑
# ...
if __name__ == '__main__':
main()
evaluate.py
import argparse
from models import Generator
from data import prepare_dataset
from configs import load_config
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, default='configs/default_config.yaml')
args = parser.parse_args()
config = load_config(args.config)
dataset = prepare_dataset(config)
generator = Generator(config)
# 评估逻辑
# ...
if __name__ == '__main__':
main()
3. 项目的配置文件介绍
配置文件位于 configs/
目录下,默认配置文件为 default_config.yaml
。
default_config.yaml
data:
path: 'path/to/dataset'
batch_size: 64
model:
latent_dim: 100
feature_maps: 64
training:
epochs: 200
lr: 0.0002
beta1: 0.5
beta2: 0.999
data
: 数据集路径和批次大小。model
: 模型参数,包括潜在维度(latent dimension)和特征图(feature maps)。training
: 训练参数,包括训练轮数(epochs)、学习率(lr)和优化器参数(beta1, beta2)。
通过修改配置文件,可以调整数据集路径、模型参数和训练参数,以适应不同的训练需求。