highdicom 项目教程

highdicom 项目教程

highdicom High-level DICOM abstractions for the Python programming language highdicom 项目地址: https://gitcode.com/gh_mirrors/hi/highdicom

1. 项目的目录结构及介绍

highdicom 项目的目录结构如下:

highdicom/
├── highdicom/
│   ├── __init__.py
│   ├── base.py
│   ├── frame.py
│   ├── io.py
│   ├── sr.py
│   └── utils.py
├── tests/
│   ├── __init__.py
│   ├── test_base.py
│   ├── test_frame.py
│   ├── test_io.py
│   ├── test_sr.py
│   └── test_utils.py
├── setup.py
├── README.md
└── requirements.txt

目录结构介绍:

  • highdicom/: 包含项目的主要代码文件。
    • __init__.py: 初始化文件,使该目录成为一个Python包。
    • base.py, frame.py, io.py, sr.py, utils.py: 项目的主要功能模块。
  • tests/: 包含项目的测试代码。
    • __init__.py: 初始化文件,使该目录成为一个Python包。
    • test_base.py, test_frame.py, test_io.py, test_sr.py, test_utils.py: 对应主要功能模块的测试文件。
  • setup.py: 项目的安装配置文件。
  • README.md: 项目的说明文档。
  • requirements.txt: 项目依赖的Python包列表。

2. 项目的启动文件介绍

highdicom 项目没有明确的“启动文件”,因为它是一个库项目,主要用于导入和使用其功能模块。用户可以根据需要导入 highdicom 包中的模块来使用其功能。

例如,用户可以通过以下方式导入并使用 highdicom 的功能:

import highdicom

# 使用 highdicom 的功能

3. 项目的配置文件介绍

highdicom 项目的主要配置文件是 setup.pyrequirements.txt

setup.py

setup.py 是 Python 项目的标准安装配置文件,用于定义项目的元数据和依赖项。用户可以通过运行 python setup.py install 来安装项目及其依赖项。

requirements.txt

requirements.txt 文件列出了项目运行所需的所有 Python 包及其版本。用户可以通过运行 pip install -r requirements.txt 来安装这些依赖项。

例如,requirements.txt 可能包含如下内容:

numpy==1.21.0
pandas==1.3.0

用户可以通过以下命令安装这些依赖项:

pip install -r requirements.txt

通过这些配置文件,用户可以轻松地安装和管理 highdicom 项目的依赖项。

highdicom High-level DICOM abstractions for the Python programming language highdicom 项目地址: https://gitcode.com/gh_mirrors/hi/highdicom

基于python+NSGA2算法的供水管网水质监测点布局+源码+项目文档,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用,详情见md文档 供水管网水质监测点/传感器布局优化 1.基于整数编码的NSGA2算法 2.最短监测时间与最大监测概率双目标函数 3.使用基于epanet的wntr库进行水力水质模拟,并处理结果 4.将处理结果代入NSGA2算法, 迭代计算出结果 5. 所有功能基本实现, 流程基本可以走通 程序概述 本程序主要是解决供水管网水质监测点的布局优化问题; 面向的是突发污染情况下的水质监测点选取,因此需要多节点进行水质污染注入实验; 之前的做法都是使用epanet的程序包,链接库,但USEPA之后开源了基于Python的水力水质模拟库WNTR; 因此本程序使用了WNTR进行水力水质模拟,编写了水质模拟、数据处理模块;用于解决污染实验的实现与数据收集处理; 由于选择监测点是布局优化问题,因此使用了常见的进化算法NSGA2——非支配遗传算法; 水质监测布局常用的目标是最小化监测时间和最大化监测事件,即一组监测点尽可能对污染事件发生响应最快,对污染事件监测到的数量最多即为最优,但两个目标属于负相关。 有关帕累托解、NGSA2算法请自行搜索其他资料。 本程序实现了水质模拟、数据处理、算法迭代的全部过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

邴坤鸿Jewel

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值