MarioGPT 项目使用教程
1. 项目目录结构及介绍
mario-gpt/
├── data/
│ ├── levels/
│ └── processed/
├── models/
│ ├── gpt2/
│ └── utils/
├── notebooks/
│ └── example.ipynb
├── scripts/
│ ├── preprocess.py
│ └── train.py
├── tests/
│ └── test_model.py
├── .gitignore
├── LICENSE
├── README.md
├── requirements.txt
└── setup.py
目录结构介绍
-
data/: 存放原始数据和预处理后的数据。
- levels/: 包含原始的超级马里奥关卡数据。
- processed/: 存放预处理后的数据文件。
-
models/: 存放模型相关的代码和配置。
- gpt2/: 包含GPT2模型的实现和相关配置。
- utils/: 包含一些辅助函数和工具。
-
notebooks/: 存放Jupyter Notebook文件,用于交互式实验和演示。
- example.ipynb: 一个示例Notebook,展示如何使用模型生成关卡。
-
scripts/: 存放脚本文件,用于数据预处理和模型训练。
- preprocess.py: 数据预处理脚本。
- train.py: 模型训练脚本。
-
tests/: 存放测试代码。
- test_model.py: 测试模型的代码。
-
.gitignore: Git忽略文件配置。
-
LICENSE: 项目许可证文件。
-
README.md: 项目介绍和使用说明。
-
requirements.txt: 项目依赖包列表。
-
setup.py: 项目安装脚本。
2. 项目启动文件介绍
启动文件
- scripts/train.py: 这是项目的启动文件,用于训练MarioGPT模型。
使用方法
python scripts/train.py --config path/to/config.json
参数说明
--config
: 指定配置文件路径,配置文件中包含训练所需的各种参数。
3. 项目的配置文件介绍
配置文件
- config.json: 这是项目的配置文件,包含训练模型所需的各种参数。
配置文件示例
{
"model_name": "distilgpt2",
"data_path": "data/processed/train.pkl",
"output_dir": "models/gpt2",
"batch_size": 32,
"num_epochs": 10,
"learning_rate": 5e-5
}
配置项说明
- model_name: 使用的GPT2模型名称。
- data_path: 预处理后的数据文件路径。
- output_dir: 模型输出目录。
- batch_size: 批处理大小。
- num_epochs: 训练轮数。
- learning_rate: 学习率。
通过以上配置文件,可以灵活调整训练过程中的各项参数,以适应不同的训练需求。