探索大规模HPC工作流的利器:Merlin
merlin Machine Learning for HPC Workflows 项目地址: https://gitcode.com/gh_mirrors/merlin3/merlin
项目介绍
Merlin是一款专为运行机器学习工作流而设计的工具,旨在简化构建、运行和处理大规模HPC(高性能计算)工作流的过程。Merlin的核心是一个分布式任务队列系统,能够将复杂的HPC工作流扩展到大规模模拟任务中,例如在Sierra超级计算机上运行了1亿次模拟。通过Merlin,用户可以轻松生成大规模数据集,用于训练深度神经网络,从而实现设计优化、不确定性量化和统计实验推断等应用。
项目技术分析
Merlin的技术架构基于多个开源组件,包括:
- Maestro:用于描述工作流和定义任务依赖关系的接口。
- Celery:将任务依赖关系转化为具体任务的工具,支持多种后端技术(如RabbitMQ和Redis)。
- Flux:用于与HPC批处理系统接口,能够扩展到大量作业。
Merlin通过这些组件的集成,实现了高效的任务调度和资源管理,确保工作流能够在大规模HPC环境中高效运行。
项目及技术应用场景
Merlin的应用场景广泛,特别适用于需要大规模模拟和数据生成的领域,如:
- 惯性约束聚变:通过大规模模拟生成数据,用于训练神经网络以优化聚变过程。
- 极紫外光生成:模拟光生成过程,用于设计和优化光生成设备。
- 结构力学和原子物理:通过大规模模拟研究材料的力学和物理特性。
此外,Merlin还支持动态工作流,适用于智能采样设计空间或强化学习任务。
项目特点
- 高扩展性:Merlin能够处理大规模HPC工作流,支持数百万甚至上亿次模拟。
- 灵活的任务调度:通过分布式任务队列系统,Merlin能够高效调度任务,确保资源利用最大化。
- 动态工作流:支持动态添加任务,适用于需要实时调整的工作流。
- 多平台支持:Merlin支持多种后端技术和HPC系统,确保在不同环境中都能高效运行。
快速开始
Merlin支持Python 3.6+版本。安装Merlin及其依赖项的步骤如下:
$ pip3 install merlin
$ merlin config
要运行一个包含模拟和机器学习的示例工作流,可以按照以下步骤操作:
$ merlin example feature_demo
$ pip install -r feature_demo/requirements.txt
$ merlin run feature_demo/feature_demo.yaml
$ merlin run-workers feature_demo/feature_demo.yaml
文档与支持
更多详细信息,请访问完整文档或运行以下命令获取帮助:
$ merlin --help
如有任何问题,欢迎联系merlin@llnl.gov。
许可证
Merlin采用MIT许可证,详细信息请参阅LICENSE文件。
LLNL-CODE-797170
merlin Machine Learning for HPC Workflows 项目地址: https://gitcode.com/gh_mirrors/merlin3/merlin