Qwen2.5-VL 开源项目教程

Qwen2.5-VL 开源项目教程

Qwen2.5-VL Qwen2.5-VL is the multimodal large language model series developed by Qwen team, Alibaba Cloud. Qwen2.5-VL 项目地址: https://gitcode.com/gh_mirrors/qw/Qwen2.5-VL

1. 项目介绍

Qwen2.5-VL 是由 Qwen 团队和阿里云共同开发的的多模态大型语言模型系列。该模型具备强大的文档解析能力、精确的对象定位、超长视频理解和细粒度视频定位等功能。适用于多种场景,包括图像识别、视频理解、自然语言处理等领域。

2. 项目快速启动

环境准备

在开始之前,请确保您的环境中已经安装了以下依赖项:

pip install git+https://github.com/huggingface/transformers accelerate
pip install qwen-vl-utils[decord]

如果您的系统不支持 decord,则可以使用以下命令安装备用依赖项:

pip install qwen-vl-utils

快速启动代码

以下是一个简单的代码示例,展示如何使用 Qwen2.5-VL 进行图像识别:

from transformers import Qwen2_5_VLProcessor, Qwen2_5_VLForImageClassification
import torch

# 加载模型和处理器
processor = Qwen2_5_VLProcessor.from_pretrained("QwenLM/Qwen2.5-VL")
model = Qwen2_5_VLForImageClassification.from_pretrained("QwenLM/Qwen2.5-VL")

# 加载图像
image = PIL.Image.open("path/to/your/image.jpg")

# 处理图像并进行预测
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits

# 获取预测结果
predicted_class_idx = logits.argmax(-1).item()
label = model.config.id2label[predicted_class_idx]
print(f"Predicted label: {label}")

确保将 "path/to/your/image.jpg" 替换为您要识别的图像的路径。

3. 应用案例和最佳实践

以下是一些使用 Qwen2.5-VL 的应用案例和最佳实践:

  • 文档解析:Qwen2.5-VL 可以用于解析各种格式的文档,包括手写文本、表格、图表、化学公式和乐谱等。
  • 对象定位:模型能够精确地检测和定位各种对象,支持绝对坐标和 JSON 格式的空间推理。
  • 视频理解:Qwen2.5-VL 可以理解长达数小时的视频,并能够快速提取事件片段。

4. 典型生态项目

Qwen2.5-VL 的生态系统中包括了多个典型项目,如下:

  • Cookbooks:提供多种能力的示例代码,包括识别、定位、文档解析、视频理解等。
  • ModelScope:用于部署和管理模型的平台。
  • Transformers:用于加载和运行 Qwen2.5-VL 模型的库。

通过这些项目和工具,开发者可以更加便捷地使用 Qwen2.5-VL 进行开发和部署。

Qwen2.5-VL Qwen2.5-VL is the multimodal large language model series developed by Qwen team, Alibaba Cloud. Qwen2.5-VL 项目地址: https://gitcode.com/gh_mirrors/qw/Qwen2.5-VL

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

骆万湛Rebecca

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值