WavMark 音频水印工具使用教程

WavMark 音频水印工具使用教程

项目地址:https://gitcode.com/gh_mirrors/wa/wavmark

项目介绍

WavMark 是一个基于 AI 的音频水印工具,旨在为音频生成过程中嵌入和提取水印信息。该项目由 Guangyu Chen 等人开发,支持在音频文件中嵌入 32 位信息,并能够在多种攻击下保持水印的完整性。WavMark 使用 MIT 许可证,是一个开源项目,可以在 GitHub 上找到其源代码和相关文档。

项目快速启动

安装

首先,克隆项目仓库到本地:

git clone https://github.com/wavmark/wavmark.git
cd wavmark

然后,安装所需的依赖包:

pip install -r requirements.txt

使用示例

以下是一个简单的示例,展示如何使用 WavMark 在音频文件中嵌入和提取水印:

from wavmark.utils import file_reader
from wavmark import encode_watermark, decode_watermark
import soundfile as sf

# 读取音频文件并转换为单声道 16kHz 格式
signal = file_reader.read_as_single_channel("example.wav", aim_sr=16000)

# 编码水印
watermarked_signal, _ = encode_watermark(model, signal, payload, show_progress=True)

# 保存带有水印的音频文件
sf.write("output.wav", watermarked_signal, 16000)

# 解码水印
payload_decoded, _ = decode_watermark(model, watermarked_signal, show_progress=True)
BER = (payload != payload_decoded).mean() * 100
print("Decode BER: %1f" % BER)

应用案例和最佳实践

应用案例

  1. 版权保护:在音乐作品中嵌入水印,以证明版权归属。
  2. 身份验证:在语音消息中嵌入水印,用于身份验证和防止篡改。
  3. 追踪来源:在广播音频中嵌入水印,用于追踪音频的来源和传播路径。

最佳实践

  1. 选择合适的水印信息:确保水印信息具有唯一性和不可预测性。
  2. 测试鲁棒性:在多种攻击下测试水印的鲁棒性,确保水印在实际应用中的可靠性。
  3. 优化嵌入参数:根据具体应用场景调整嵌入参数,以平衡水印的不可感知性和鲁棒性。

典型生态项目

WavMark 作为一个音频水印工具,可以与其他音频处理和生成项目结合使用,例如:

  1. 语音合成模型:如 VALL-E 和 Spear-TTS,可以在合成音频中嵌入水印,用于版权保护和身份验证。
  2. 音频编辑软件:如 Audacity,可以在编辑过程中嵌入水印,确保音频的完整性和来源可追溯。
  3. 音乐生成模型:如 MusicGen,可以在生成的音乐作品中嵌入水印,用于版权声明和追踪。

通过与其他项目的结合,WavMark 可以进一步扩展其应用场景,提供更全面的音频水印解决方案。

wavmark AI-based Audio Watermarking Tool wavmark 项目地址: https://gitcode.com/gh_mirrors/wa/wavmark

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

农彩媛Louise

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值