WavMark 音频水印工具使用教程
项目地址:https://gitcode.com/gh_mirrors/wa/wavmark
项目介绍
WavMark 是一个基于 AI 的音频水印工具,旨在为音频生成过程中嵌入和提取水印信息。该项目由 Guangyu Chen 等人开发,支持在音频文件中嵌入 32 位信息,并能够在多种攻击下保持水印的完整性。WavMark 使用 MIT 许可证,是一个开源项目,可以在 GitHub 上找到其源代码和相关文档。
项目快速启动
安装
首先,克隆项目仓库到本地:
git clone https://github.com/wavmark/wavmark.git
cd wavmark
然后,安装所需的依赖包:
pip install -r requirements.txt
使用示例
以下是一个简单的示例,展示如何使用 WavMark 在音频文件中嵌入和提取水印:
from wavmark.utils import file_reader
from wavmark import encode_watermark, decode_watermark
import soundfile as sf
# 读取音频文件并转换为单声道 16kHz 格式
signal = file_reader.read_as_single_channel("example.wav", aim_sr=16000)
# 编码水印
watermarked_signal, _ = encode_watermark(model, signal, payload, show_progress=True)
# 保存带有水印的音频文件
sf.write("output.wav", watermarked_signal, 16000)
# 解码水印
payload_decoded, _ = decode_watermark(model, watermarked_signal, show_progress=True)
BER = (payload != payload_decoded).mean() * 100
print("Decode BER: %1f" % BER)
应用案例和最佳实践
应用案例
- 版权保护:在音乐作品中嵌入水印,以证明版权归属。
- 身份验证:在语音消息中嵌入水印,用于身份验证和防止篡改。
- 追踪来源:在广播音频中嵌入水印,用于追踪音频的来源和传播路径。
最佳实践
- 选择合适的水印信息:确保水印信息具有唯一性和不可预测性。
- 测试鲁棒性:在多种攻击下测试水印的鲁棒性,确保水印在实际应用中的可靠性。
- 优化嵌入参数:根据具体应用场景调整嵌入参数,以平衡水印的不可感知性和鲁棒性。
典型生态项目
WavMark 作为一个音频水印工具,可以与其他音频处理和生成项目结合使用,例如:
- 语音合成模型:如 VALL-E 和 Spear-TTS,可以在合成音频中嵌入水印,用于版权保护和身份验证。
- 音频编辑软件:如 Audacity,可以在编辑过程中嵌入水印,确保音频的完整性和来源可追溯。
- 音乐生成模型:如 MusicGen,可以在生成的音乐作品中嵌入水印,用于版权声明和追踪。
通过与其他项目的结合,WavMark 可以进一步扩展其应用场景,提供更全面的音频水印解决方案。
wavmark AI-based Audio Watermarking Tool 项目地址: https://gitcode.com/gh_mirrors/wa/wavmark