Kor:让大语言模型帮你从文本中提取结构化数据
kor LLM(😽) 项目地址: https://gitcode.com/gh_mirrors/ko/kor
项目介绍
Kor 是一个半成品原型,旨在帮助你从文本中提取结构化数据,利用大语言模型(LLMs)的能力。通过指定提取的架构并提供一些示例,Kor 会生成一个提示,将其发送到指定的 LLM,并解析输出结果。虽然它可能不会每次都完美工作,但它提供了一种新颖的方式来处理文本数据提取任务。
项目技术分析
Kor 的核心技术基于大语言模型(LLMs),如 GPT-3.5-turbo。它通过定义一个结构化的模式(schema),并结合一些示例,生成一个提示(prompt),然后将这个提示发送给 LLM 进行处理。Kor 不仅支持 Kor 风格的 schema,还兼容 Pydantic 风格的 schema,这使得它在处理复杂数据结构时更加灵活。
此外,Kor 还集成了 LangChain 框架,进一步增强了其在自然语言处理任务中的能力。LangChain 提供了一系列工具和接口,使得 Kor 能够更高效地与 LLMs 进行交互。
项目及技术应用场景
Kor 的应用场景非常广泛,特别是在需要从大量非结构化文本中提取结构化数据的场景中。以下是一些具体的应用场景:
- AI 助手:通过 Kor,可以构建一个能够精确理解用户请求的 AI 助手,从而提供更智能的服务。
- API 访问:Kor 可以为现有的 API 提供自然语言接口,使得用户可以通过简单的文本命令来操作复杂的 API。
- 数据提取:在数据分析和处理中,Kor 可以帮助从文本中提取关键信息,如歌曲、艺术家、动作等,从而简化数据处理流程。
项目特点
- 灵活的 Schema 定义:Kor 支持两种风格的 schema 定义,即 Kor 风格和 Pydantic 风格,这使得用户可以根据自己的需求选择最适合的方式来定义数据结构。
- 集成 LangChain:通过与 LangChain 的集成,Kor 能够更好地利用 LLMs 的能力,提供更强大的自然语言处理功能。
- 兼容性强:Kor 支持 Python 3.8 到 3.11,确保了在不同环境下的稳定运行。
- 易于扩展:Kor 是一个开源项目,用户可以根据自己的需求进行扩展和定制,满足特定的业务需求。
总结
Kor 是一个充满潜力的项目,虽然目前还处于原型阶段,但其灵活的架构和强大的技术支持使其在文本数据提取领域具有广泛的应用前景。如果你正在寻找一种新的方式来处理文本数据提取任务,Kor 绝对值得一试。
如何开始
你可以通过以下命令安装 Kor:
pip install kor
更多详细信息,请访问 Kor 的 GitHub 页面 或查看 官方文档。
贡献与反馈
如果你有任何想法或建议,欢迎在 GitHub 上提交 issue 或参与讨论。Kor 是一个开源项目,我们期待你的贡献!
通过 Kor,让我们一起探索大语言模型在文本数据提取中的无限可能!